

What are Copulas
OO

Bayesian estimation
O

BNP mixtures of copulas
OOOOOOOO

Numerical Experiments
OOOOOO

Bayesian Copula-based Latent Variable Models

Radu Craiu

Department of Statistical Sciences
University of Toronto

Joint with Luis Nieto-Barajas (ITAM, Mexico) and Ruyi Pan (University of Toronto)

ICSDS, Sevilla, December 2025

Copulas: The Joys

- ▶ Copulas are mathematical devices used to **model dependence between random variables** regardless of their marginals.
- ▶ If Y_1, Y_2, \dots, Y_K are continuous r.v.'s with cdfs F_1, F_2, \dots, F_k , there is an **unique copula** $C : [0, 1]^K \rightarrow [0, 1]$ that links the joint cdf with the marginal ones (Sklar's Theorem),

$$F(t_1, \dots, t_k) = C(F_1(t_1), \dots, F_k(t_k)).$$

- ▶ Copulas are useful for **data fusion/integration** because they lead to coherent joint models, even when the marginals are in different families (e.g., Gaussian, Poisson, Student, etc) or of different types (e.g, discrete, continuous).
- ▶ Copulas **unlock information contained in the dependence part of the distribution** (second-order) that complements the information in the marginals.
- ▶ Simply put, copulas allow us to **extend statistical methods beyond the use of a multivariate Gaussian or Student**.

Motivation

- ▶ Parametric copulas can capture a wide range of dependence patterns for lower values of k , $k \leq 2, 3$.
- ▶ In higher dimensions, say $k > 5$ a parametric family (usually indexed by a parameter of dimension < 3) will not be able to capture complex dependencies
- ▶ Vine copulas offer additional flexibility but can be difficult to fit.
- ▶ Today: Bayesian nonparametric mixtures of copulas to extend their flexibility in higher dimensions

Big Picture

- ▶ Bayesian estimation for copula models is desirable as the posterior incorporates uncertainty due to marginals and dependence structure (Levi and Craiu, 2018)
- ▶ We consider Bayesian nonparametric mixtures of Archimedean copulas in which the mixing distribution is the Poisson-Dirichlet process, introduced by Pitman and Yor (1997).
- ▶ It extends the range of dependence patterns that can be modeled.
- ▶ In the case of heterogeneous populations, it clusters the sample based on information contained in the marginals AND the dependence structure.

Archimedean copulas

- ▶ An Archimedean family is characterized by a continuous, decreasing and convex **generator** function ϕ such that $\phi : [0, 1] \rightarrow \mathbb{R}^+$, $\phi(0) = \infty$, $\phi(1) = 0$.
- ▶ The copula with generator ϕ is defined as

$$C(u_1, \dots, u_p) = \phi^{-1}\{\phi(u_1) + \dots + \phi(u_p)\}. \quad (1)$$

- ▶ Generators ϕ usually belong to families that are parameterized in terms of a single parameter $\theta \in \Theta$
- ▶ Archimedean copulas assume that the variables are exchangeable and the mixture will preserve this.

BNP mixtures of copulas

- ▶ G has a Poisson-Dirichlet prior with scalar parameters $a \in [0, 1]$, $b > -a$ and mean parameter G_0 , denoted as $G \sim \text{PD}(a, b, G_0)$, when

$$G(\cdot) = \sum_{k=1}^{\infty} \omega_k \delta_{\theta_k}(\cdot), \quad (2)$$

where $\omega_1 = \nu_1$ and $\omega_k = \nu_k \prod_{j < k} (1 - \nu_j)$ for $k = 2, 3 \dots$, with $\nu_k \stackrel{\text{ind}}{\sim} \text{Be}(1 - a, b + ka)$ independent of the weights, locations $\theta_k \stackrel{\text{iid}}{\sim} G_0$ for $k = 1, 2, \dots$, and δ_{θ} is the Dirac measure at θ .

- ▶ The functional parameter G_0 is known as the centering measure

BNP mixtures of copulas

- Bayesian nonparametric mixture model for Archimedean copulas $C(\mathbf{u} | \theta)$ is obtained when using the Poisson-Dirichlet process as the mixing distribution for the parameter θ

$$C(\mathbf{u}) = \int C(\mathbf{u} | \theta) G(d\theta) = \sum_{k=1}^{\infty} \omega_k C(\mathbf{u} | \theta_k), \quad (3)$$

- The Bayesian nonparametric mixture copula model can also be defined hierarchically
- For $i = 1, \dots, n$:

$$\begin{aligned} (U_{1i}, \dots, U_{pi}) \mid \theta_i &\sim f_C(\mathbf{u}_i \mid \theta_i) \\ \theta_i \mid G &\stackrel{\text{iid}}{\sim} G \\ G &\sim \text{PD}(a, b, G_0), \end{aligned} \quad (4)$$

where f_C is the copula density.

BNP mixtures of copulas

- ▶ The centering measure G_0 has density, g_0 , with support in the parameter space Θ .
- ▶ Pitman (1995) showed

$$f(\theta_i \mid \boldsymbol{\theta}_{-i}) = \frac{b + am_i}{b + n - 1} g_0(\theta_i) + \sum_{j=1}^{m_i} \frac{n_{i,j}^* - a}{b + n - 1} \delta_{\theta_{i,j}^*}(\theta_i), \quad (5)$$

with $\boldsymbol{\theta}_{-i}$ being the set of all θ_i 's excluding the i th element and $(\theta_{i,1}^*, \dots, \theta_{i,m_i}^*)$ denoting the distinct values in $\boldsymbol{\theta}_{-i}$, each with frequencies $n_{i,j}^*$, for $i = 1, \dots, n$, $j = 1, \dots, m_i$.

Posterior sampling - brief discussion

- ▶ The posterior conditional distributions for each θ_i are given by

$$f(\theta_i | \mathbf{u}, \boldsymbol{\theta}_{-i}) \propto (b + a m_i) f(\mathbf{u}_i | \theta_i) g_0(\theta_i) + \sum_{j=1}^{m_i} (n_{i,j}^* - a) f_C(\mathbf{u}_i | \theta_i) \delta_{\theta_{i,j}^*}(\theta_i)$$

- ▶ We initialize the sampler using random draws θ_i from the prior g_0 , for $i = 1, \dots, n$.
- ▶ Given the chain's state at time t , $\boldsymbol{\theta}^{(t)} = (\theta_1^{(t)}, \dots, \theta_n^{(t)})$, compute the unique values $(\theta_1^*, \dots, \theta_m^*)$ in $\boldsymbol{\theta}^{(t)}$ and re-sample each θ_j^* , $j = 1, \dots, m$ from

$$f(\theta_j | \text{c.c.}) \propto g_0(\theta_j) \prod_{\{i: \theta_i = \theta_j^*\}} f_C(\mathbf{u}_i | \theta_j),$$

where c.c. stands for clustering configuration.

Posterior sampling - brief discussion

- ▶ Draw $\theta_i^{(t+1)}$, $i = 1, \dots, n$, from

$$f(\theta_i \mid \mathbf{u}, \mathbf{v}, \boldsymbol{\theta}_{-i}, \boldsymbol{\theta}^*) = \frac{1}{k_i} \left[\sum_{j=1}^{m_i} (n_{i,j}^* - a) f_C(\mathbf{u}_i \mid \theta_{i,j}^*) \delta_{\theta_{i,j}^*}(\theta_i) + \sum_{j=m_i+1}^{m_i+r} \{(b + a m_i)/r\} f_C(\mathbf{u}_i \mid \theta_j^*) \delta_{\theta_j^*}(\theta_i) \right],$$

where $\boldsymbol{\theta}^* = \{\theta_{m_i+1}^*, \dots, \theta_{m_i+r}^*\} \stackrel{iid}{\sim} g_0$,

$$k_i = \sum_{j=1}^{m_i} (n_{i,j}^* - a) f_C(\mathbf{u}_i \mid \theta_{i,j}^*) + \sum_{j=m_i+1}^{m_i+r} \{(b + a m_i)/r\} f_C(\mathbf{u}_i \mid \theta_j^*).$$

Posterior sampling - brief discussion

- ▶ The hyperparameters (a, b) are important in determining the number of components in the mixture
- ▶ We assign hyperpriors instead of keeping them fixed
- ▶ Since $a \in [0, 1]$ and $b \in (-a, \infty)$, the joint hyperprior is factorized as $f(a, b) = f(b | a)f(a)$
- ▶ $f(a, b) = \text{Gamma}(b + a | c_b, d_b)\text{Beta}(a | c_a, d_a)$

Additional considerations

- Goodness-of-fit is evaluated using the logarithm of the pseudo-marginal likelihood $LPM\ell = \sum_{i=1}^n \log(CPO_i)$ where $CPO_i = f(\mathbf{u}_i | \mathbf{u}_{-i})$ and can be estimated using

$$\widehat{CPO}_i = \left[\frac{1}{L} \sum_{l=1}^L \frac{1}{f_C(\mathbf{u}_i | \theta_i^{(l)})} \right]^{-1}.$$

- The uncertainty about the number of mixture components is quantified by the posterior distribution but... there are multiple cluster configurations with the same number of components \tilde{m} .
- In order to select a single clustering configuration and produce further inferences, we used the search algorithm presented in Dahl et al (2022) and implemented in the R package `salso`.

Simulation experiment - Sanity check

Data / Model	AMH	CLA	FRA	GUM	JOE	BSA
AMH	0.34	-0.08	0.02	-1.07	2.48	-4.32
CLA	14.75	147.42	74.91	78.37	53.23	7.4
FRA	0.13	7.11	10.00	1.62	3.09	-3.01
GUM	77.85	199.23	238.08	276.27	270.27	110.14
JOE	37.76	75.85	98.33	118.10	120.91	55.33

Table: Simulation study: Bivariate data from a mixture of Archimedean copulas. LPML statistics when taking a sample of size $n = 200$ and fitting the five models. Bayesian semiparametric Archimedean copula competing model in the last column.

Simulation experiment - Sanity check

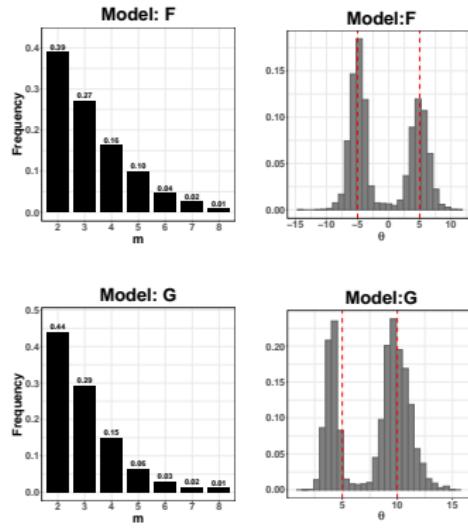
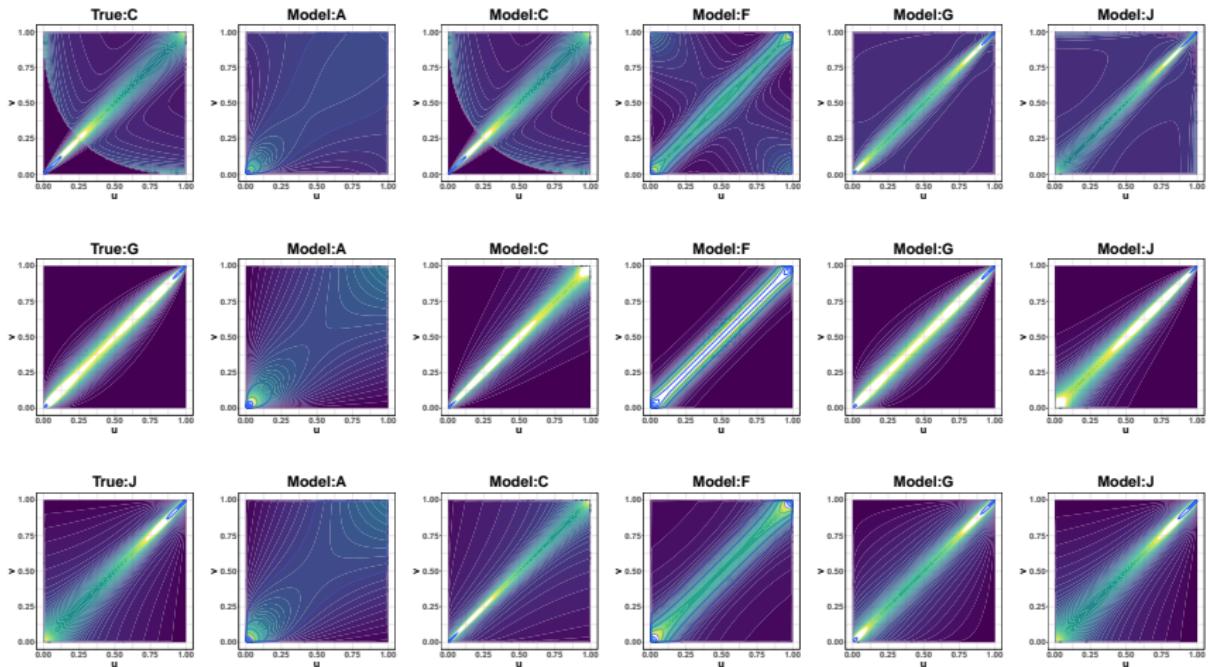


Figure: Simulation: Bivariate data from a mixture of Archimedean copulas with $n = 500$. Posterior distributions when using the same kernel used to sample the data. Vertical dotted lines correspond to the true values.

Simulation experiment - Sanity check



Wine analysis

- ▶ We consider the red wine data of ? which consists of several physicochemical tests of the red variants of 1,599 Portuguese wines (*Vinho verde*)
- ▶ We concentrate on three variables: fixed acidity (X_1), citric acid (X_2) and density (X_3)
- ▶ The MCMC was run for 15,000 iterations with a burn-in of 5,000
- ▶ The LPML scores are:

Copula	AMH	Clayton	Frank	Gumbel	Joe
LPML	279	604	685	711	413

Wine analysis

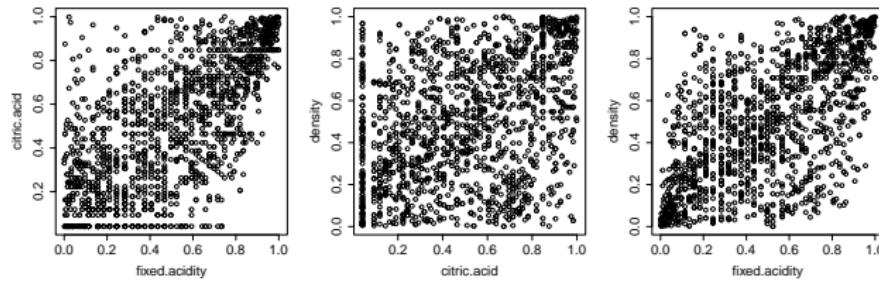
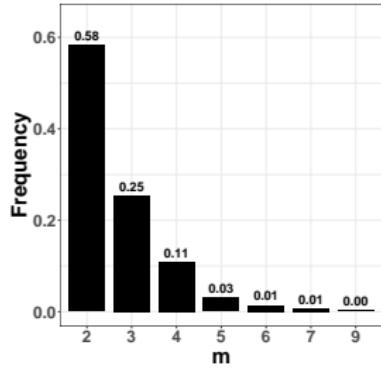


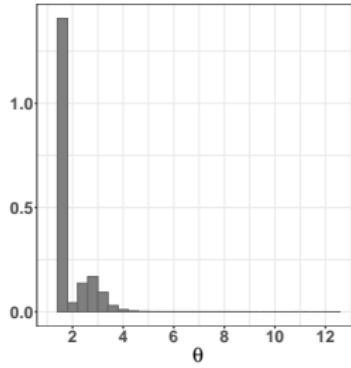
Figure: Red wine data: fixed acidity, citric acid, and density. Pairwise scatterplots of the three variables.

Wine analysis

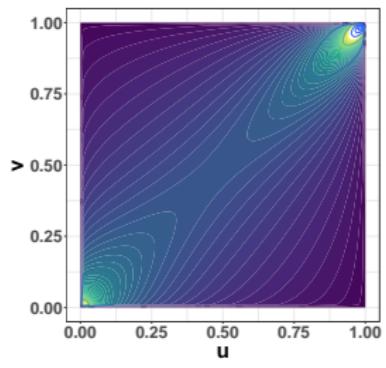
Model: G



Model:G



Model:G



Wine analysis

- ▶ The posterior estimation of Kendall tau for the best-fitting model, Gumbel, is 0.361 with a 95% CI of (0.24, 0.70).
- ▶ The CI contains the three empirical Kendall tau values that correspond to pairwise association parameters among the three characteristics of the wine.
- ▶ Implementing our clustering selection procedure, we obtain two groups with copula parameters estimated at: 1.52 with a 95% CI (1.48, 1.56) and weight 0.98; and at 6.08 with 95% CI (4.94, 7.41) and weight 0.02.

What I would like to see

- ▶ A mixture model where the symmetry is not required
 $Dep(x_i, x_j) \neq Dep(x_{i'}, x_{j'})$.
- ▶ Integration of asymmetric Archimedean copulas in the current framework.
- ▶ Can we identify copula families whose mixtures are dense in the space of copulas of dimension d ?
- ▶ Papers available here:
<https://www.utstat.toronto.edu/craiu/Papers/index.html>