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Abstract

Population dynamics models play an important role in a number of fields, such as actuarial
science, demography, and ecology. Statistical inference for these models can be difficult when,
in addition to the process’ inherent stochasticity, one also needs to account for sampling error.
Ignoring the latter can lead to biases in the estimation, which in turn can produce erroneous
conclusions about the system’s behavior. The Gompertz model is widely used to infer population
size dynamics, but a full likelihood approach can be computationally prohibitive when sampling
error is accounted for. We close this gap by developing efficient computational tools for statistical
inference in the Gompertz model based on the full likelihood. The approach is illustrated in
both the Bayesian and frequentist paradigms. Performance is illustrated with simulations and

data analysis.
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1 Introduction

Population dynamics models are crucial in both applied and theoretical ecology, because they help
to explain past population fluctuations and project future population abundances
. These models are used to manage the conservation of species, understand the dynamics of
biological invasions, and assess the response of certain species to changes in their environment which
can range from those produced by human developments to those triggered by climate change. The
accuracy and reliability of these models are often affected by two major components of uncertainty
due to: i) the process’ stochasticity connected to, say, demographic and environmental factors, and
ii) the sampling error.

Ecologists have long recognized the importance of separating observation from process error in

ecological modeling, and significant progress has been achieved through the use of state-space models

to analyze time series of population fluctuations [Dennis et al. [2006, Hostetler and Chandler} [2015]

[Auger-Méthé et all [2021]. However, including both process noise and observation error in the model

remains challenging, as it produces significant computational difficulties. To illustrate, [Staples et al.
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[2004] note that the sampling error adds to the variability in the data leading to positively biased
estimators of process variation and propose a restricted maximum likelihood estimation of the latter
and of the error variance. Subsequently, |Lindén and Knape, |2009] show empirically that observation
errors can change the autocorrelation structure of a time series with potential biases resulting from
models that ignore such errors.

The Gompertz model |Gompertz, [1825] is widely used to describe and characterize population
dynamics. Its use permeates multiple disciplines, including actuarial science [e.g., [Butt and Haber-
man), 2004, Baione and Levantesil [2018], demography [e.g., |Alexander et al.| 2017, [Tai and Noymer],
2018], as well as in life sciences where it can be used to model the growth patterns of animals, plants,
tumors and the volume of bacteria [Winsor, {1932, |Tjerve and Tjgrvel |2017]. Most importantly, the
Gompertz model can be modified to account for sampling variability and, in some clearly structured
problems, it is possible to explicitly formulate the likelihood function in the presence of sampling
error. For example, if the observation noise is assumed to follow a log-normal distribution, it is
feasible to write the likelihood function [Staples et al. [2004] and the model can be transformed
into a linear Gaussian state-space model which can be fitted using the Kalman filter [Dennis et al.,
2006). However, if the sampling error is not log-normal, the expression of the likelihood becomes
more complex. Relevant for this paper is the study of [Lele| [2006] which shows that likelihood-based
inference for a stationary Gompertz model with Poisson sampling errors requires the calculation of
a high-dimensional integral that brings on a prohibitive computational burden. He proposes a com-
posite likelihood approach that reduces the dimension of the integral and makes the computation
manageable for longer time series. However, replacing the full likelihood with a composite one comes
with an inferential cost because the resulting confidence, or credible, intervals will not have nominal
coverage.

The main contribution of this paper is the construction of algorithms that allow for a full
likelihood-based analysis of the Gompertz model with Poisson errors. Central to our approach is
an efficient algorithm for computing the likelihood, which allows us to conduct both frequentist and
Bayesian inference. The developed methods are available in a new R package published on GitHub.
The paper is organized as follows. In Section [2| we introduce the notation and the statistical model.
Section [3| contains the estimation procedure for a frequentist approach based on a simulation-aided
EM algorithm |[Dempster et al.l (1977, [Wei and Tanner, [1990]. The Bayesian analysis relies on a new
MCMC sampler which is described in Section[d} The paper continues with a Section [5| of numerical
experiments that includes simulations and a data analysis. A discussion of open questions and future

research directions closes the paper in Section [6]

2 Statistical Model

Consider a population observed at times ¢ = 1,2,...,T. The Gompertz model with stochastic errors
establishes a probabilistic model for the evolution of Ny, the population size at time ¢, for 1 <t < T.
Specifically, assume that for all 1 <¢ < T —1,

Nt+1 = Nt exp(a+blog(Nt) +€t+1), (1)



where a is an individual intrinsic growth rate parameter, b links the current measure with the
past one, and &; are independent errors normally distributed: &; ~ N(0,0%). The logarithmic

transformation of IV; in leads to
Zt+1 =a-+ (1+b)Zt+€t+1 (2)

where Z; = log(N;). Equation implies that the Gompertz model corresponds, on the logarithmic
scale, to an autoregressive process of order 1. If we assume that |1 + b| < 1, then for any subset of
n observations, the n-dimensional marginal distribution of the log transformed population size, Z,

has a multivariate normal distribution (Z;,, Z;,,..., Z;, ) ~ N,(u,X) where
p=(01,01,...,61), 2 =6,B, and Bj = (1 4 bl (3)

and 6, = —a/b and 6 = —0?/[b(2 4 b)]. In what follows, we denote 8 = (61, 62,b).

In this paper, we consider the case where the exact population size N; is unknown. Instead, we
assume that at time t € {1,...,T}, N; is the observed population size, whose conditional probability
mass function is denoted 7(N;|Ny, ¢) and is indexed by the parameter ¢. Furthermore, we assume
that the random variables {N;| 1 < ¢t < T} are independent conditionally on {N; : 1 <t < T}. The
observed-data likelihood is obtained by taking advantage of the conditional distribution of N;*|V,

and averaging the missing true population values {Ny,..., Nr}.
L(0.0IN") = [ [+ [ (Vi INy 6 (N5 [Nas ). 7 (N N 6)n(NI6) ANy dNa... N, (4)

where m(IN|0) indicates the joint distribution of the unobserved time series of exact population sizes.

If the sampling error distribution 7 (N;*|N¢, ¢) is assumed to be log-normal, then it is possible to
explicitly formulate the complete likelihood function as in Dennis et al.| [2006]. However, for other
sampling error distributions, the likelihood cannot be expressed in closed form using elementary
functions. Here we focus on the case of a Poisson sampling error distribution, i.e. N;* ~ Poisson(Vy),
for all 1 <t < T. In this case, no additional parameters, ¢, are associated with the sampling error
distribution. However, the use of a Poisson distribution leads to computational challenges because
the likelihood is not available in closed form, as discussed by |Lele, |2006]. In Section [3| we present a
method for directly addressing the expression to perform parameter inference. Our approach is
very general and can also be implemented in a Bayesian framework, as we show in Section 4] The

performance of the proposed algorithms is examined in Section [5.1

3 Maximum likelihood based inference

We describe a frequentist inferential method for the Gompertz model with Poisson observation errors.
In particular, we are interested in computing the maximum likelihood estimator (MLE) for 6 and
producing confidence intervals. The proposed algorithm takes advantage of the data augmentation

strategy implied by . It is apparent that if the population sizes N were available, then the



inference would be straightforward, since it would rely on the analysis of a first-order autoregressive
model for Z; = log N;. However, since population sizes N;,t € {1,2,...,T} are unobserved latent
variables, we adopt a data augmentation approach.

The expectation-maximization (EM) algorithm is a powerful iterative procedure that is used to
estimate the parameters of models with missing data. In our case, IN* is the vector of observed
data, Z = log N is the vector of missing data, and @) is the value of the parameter estimate
in the k-th iteration. The EM algorithm [Dempster et al., [1977] iteratively computes @*+1) =
arg maxg Q(0|60*)) where the Q function is

Q(616™) = Ellog 7 (N*, Z|0)|N*,0)].

The calculation of the conditional expectation of the complete data log-likelihood, log 7(IN*, Z10),
represents the E-step and its optimization as a function of @ is the M-step. The algorithm cycles
between the E- and M-steps until the change in %) becomes negligible.

In the specific case of the Gompertz model with Poisson sampling error, the complete data

log-likelihood can be separated as
logw(N*, Z|0) = logn(N*|Z) + logw(Z]0),

and only the second term depends on 6. Nonetheless, we cannot compute the expectation required
in the E-step in closed form, so a Monte Carlo strategy must be used. Specifically, we approximate

the expectation with a Monte Carlo average

E[logn(Z|0)|N*,0 = 6] ~

km—‘

J
ngw (Z,0), (5)

where Zj are sampled from Z|N*, 0 = 8. Replacing the expectation with a Monte Carlo estimate
is the idea behind the so-called Monte Carlo EM (MCEM) introduced by [Wei and Tanner| [1990]
and further expanded by [McCulloch| [1994], (Chan and Ledolter| [1995], Booth and Hobert| [1999],
and |Caffo et al.|[2005].

We start the MCEM algorithm with a value of J = 10% in and, as prescribed by |Booth
and Hobert| [1999] and |Caffo et al.|[2005], we increase the value of J with the number of iterations
in order to achieve higher precision in the estimate of the expected complete data log-likelihood.
Specifically, we use the method proposed in [Caffo et al|[2005] to determine whether an increase in
J is necessary or not. If so, we double the current value of .JJ up to a maximum value of 2 x 10%.
The conditional distribution Z|N*,0 = 0¥ is nonstandard, so we must customize a Gibbs sampler
to obtain the necessary draws. In the following, we omit the superscript (¥) for ease of notation.

According to the Gibbs sampler design, we need to obtain samples from the full conditional
distributions of each latent variable, given the observed data, the current parameter values, and the

remaining unobserved population sizes. For brevity, we denote Z_; the vector Z from which the ¢



-th component, Z; is excluded. Thus, we need to sample from

Z1|Z, N;, 0 it t=1
Zt|Z_t7N*,0: Zt|Zt—1yzt+17Nt*30 lf 1<t<T . (6)
Zp|Zp_1, N5, 0 if t=T

The expression above exploits the independence of the components of IN* conditionally on Z and
the sparse structure of the inverse of the correlation matrix B. These facts dramatically improve
the mixing of the Gibbs sampler.

From expression @, we obtain the unnormalized density for every full conditional distribution
of Z;, that is,

m(NY|Z1) 7(Z1| 22, 6) it =1
T(Z|Z_,N*,0)  $ 7(N#|Z) 7(Z4| Z—1, Z441,0) if 1<t<T (7)
(N3 Z7) n(Z7|Z1-1,0) it t=T

and the second factor in the above expression is always a Gaussian density with mean p; and variance

77 given by

01024(Z2—a)(1+b)0 ] _ 20 : _
ErET ey if t=1 raine o t=1
— . 0_2 .
po=q SEREEIa s i 1< <T . =0 i i 1<t<T . (8)
a+(1+b)Zr_4 it t=T o2 if  t=T

Therefore, expression is equal to the product between a Gaussian density and a Poisson mass

probability, so that

7, — 2
A2 N, 0) e (e - DY )
t

where j1; and 772 are given by and channel the dependence between Z; and Z_;.
We sample from the above density using an accept-reject algorithm with a N (&, w?) serving as
the proposal density. The following proposition provides the upper bound between the target and

the proposal and, in the special case of w? = 772, the best value for £.

Proposition 1. Using the above notation the following hold:

i) The ratio between expression @[) and the density of N(&,w?) is unbounded if w? < 772.



ii) If w? > 72 then there exits an unique mazimum equal to
®__2
log (Mrinte ) if W =1f
t

Nrw2r2—gr2 2 2 2 NFrw?r2—_gr2 2 )
L@ Ty 6Ty Fiw Wo [ 4 exp [ 2T §T Tuw if w?> TE
t

w2 —72 w2—T w2—72

where Wy denotes the upper branch of the Lambert W function.

iii) When w? = 12 the value of & that minimizes the mazimum Z, is
€= Ny72 + i — Wy (12 exp(N; 77 + 11t)) -

Proof. 1) The ratio between the target and the proposal density is proportional to

_ 2 )2
h(Zt) = exp (ZtNt* o eZt o (ZtQTtQ/ut) + (Z;w2€) ) . (10)

It is easy to show that is unbounded if w? < 7.

ii) We compute the first and second log-derivative and obtain

leg h(Zt) Zt — f Zt — ,ut VA
it =Rk Sl P Vo _ _ 7
dZt ¢ * 2 Tt2 ¢ ’
d?log h(Z;) _ 1 o2t
dz? w2 7P

Therefore, the second derivative is always negative as long as w? > 772; in this case h(-) is log-concave
and the unique maximum occurs at the value Z; = Z where the first derivative is equal to 0. When

w? > 772, setting the first derivative to 0 yields:

. x 22 2 2 2 2
eZt_NtWTt_th+“tW 5 W — T

— —Z, =t
w2r? w2r?

If we settle on w? > 77, after some algebra we obtain

= NjW?TE — &2 4 pw? w272 N}w?r? — €17 + pw?
7y = 5 Wo | —5——5 exp SR ,
w2 -7, w2 — w2 -7,
i i

where Wq denotes the upper branch of the Lambert W function. However, this solution is cumber-
some to work with and, more importantly, does not guarantee a more efficient solution.

iii) If we set w? = 72 we obtain

R N 2 _
Zt—10g< i T2£+#t) .
t

Replacing w? = 77 in we obtain

(Zt I (Z — )? _ oz

log h(Z,) = Z,N?
og h(Zy) t4Vy + 272




The value é which minimizes log h(Z) is found using

dlogh(Z;)  dlogh(x) dZ, . dlogh(a)

d¢ dx 2 ¢ d¢ 2
_ dlogh(x)
dg v=7,
_ Zi—¢
ra

Since the second derivative is always positive, log h(Z) is a log-convex function with an unique

minimum at § = Zt. However, since Z} is itself a function of &, from the following condition

NiT? — €+
£=10g< —— ,

Ti

after some algebra, we obtain the final expression
é= Ni12 + e — Wy (Tf exp(N; 72 + 1)) -

O

The proposed algorithm falls within the class of Markov chain Monte Carlo EM (MCMC-EM)
since it is an MCEM optimization algorithm in which the draws required to complete the E-step
are obtained using the Gibbs sampler. For the efficiency of the algorithm, it is important to choose
carefully the initialization point. Regarding the starting point 8(?), we set it equal to the method

of moments estimator that is provided by the following proposition.

Proposition 2. In the Gompertz model with Poisson sampling error distribution, the mean, variance

and covariances for {N;},1 <t < T} are:

YEN) = exp (04 2)
ii) Var(N;") = exp (261 + 62) (exp (62) — 1) ,

iii) Cov(Ny', Nfyp,) = exp (201 + 62) (exp (62(1 +b)") — 1) )
Proof. Equation implies
E(Z;) = 61, Var(Z;) = 0, Cov(Zy, Ziyn,) = 02(1 + bRl

On the other hand, N; = exp(Z;) and based on the from the expression for the moment generating

function of a Gaussian random variable, we get

6292 )

E(exp(cZ;)) = exp (601 + 5



and thus the following expressions hold

E(Ny) = E(exp(Zt)) = exp (01 + %2) ,
Var(Ny) = E(exp(2Z;)) — E*(exp(Z;)) = exp(26; + 02)(exp(62) — 1),
Cov(N¢, Newn) = E(exp(Zy + Zuyn)) — E*(exp(Zy)) = exp (201 + 02) (exp(f2(1 +b)") — 1) .

The last expression is valid because Z; + Zyyp, ~ N(201,205(1 + (1 + b)")) and E(exp(Z;)) =
E(exp(Z¢41)). Furthermore, since Nj|N, i Po(N;) we have E(N;|N;) = Var(N;|N;) = N; and
Cov(N{, N 4| Nt, Niyn) = 0 due to conditional independence. Using the law of total expectation,

the law of total variance and the law of total covariance is easy to obtain the first two moments for

N{, as

0
= E(E(N}|N,)) = exp (01 + 52) ,
Var(Ny) = E(Var(N{ M) + Var (E(N;|N,)) = exp (261 + 62) (exp (62) 1),
Cov(N{, Niip) (COV (NY N+h|Nt,Nt+h)) + COV(E(Nt*|Nt)aE(Nt*+h|Nt+h))

= exp (291 + 92) (exp (02(1 + b)h) — 1) .

O

We set the starting point 8(°) in order to match the first two moments provided by the above
proposition with their sample counterparts. Regarding the covariance, we set h = 1 because the
first lag is the most efficient to estimate.

We use a sampling importance resampling strategy for the initialization of Z. The importance

density is equal to

q(Z) = W(Zl\Nf7 Zy = log(Nz*))ﬂ(Z2|N2*, 71,723 = log(Ng)) .
X 7(Zi-1|N}_1, Zi—2, Zy = 1og(N;))w (Ze| Ny, Zi—1) -

Thus, the importance density for Z; is equal to its full conditional used in the Gibbs sampler; the full
conditional is obtained setting Z;;1 = log(NN, ;). Therefore, we draw 10,000 values of Z from ¢(-)
and compute the importance weights. The initial value is then selected with probability proportional
to these weights.

The proposed MCMC-EM method can be used computing the asymptotic variance of the MLE
too. As noted in|Caffo et al.[[2005], it is easy to use the output of the sampling algorithm to calculate
the inverse of the Fisher information matrix using the method of [Louis| [1982]. This allows us to

produce asymptotic variance estimates for 0.



4 Bayesian Inference

The Bayesian paradigm offers a different probabilistic mechanism to estimate finite sample variances
for the estimators of interest, allows principled ways to incorporate prior knowledge when it is
available, and to integrate model uncertainty into the predictions via model averaging. The crux of
the approach is the posterior distribution which encodes all the uncertainty after observing the data.
In the Gompertz model with Poisson errors, the posterior distribution is analytically intractable, so
we must study it using MCMC sampling. The data augmentation strategy presented in Section [3]
also plays a central role in the design of the MCMC algorithm. Perhaps surprisingly, the numerical
experiments show that the algorithm for sampling the Bayesian posterior is much more efficient than
the MCMC-EM in terms of computation time.

To perform a fair comparison with the MLE, we propose using a weakly informative prior. We

use an uniform prior for b, that is, b ~ U(—2,0), and normal-inverse gamma priors for 6; and 6,
02 ~ Inv.Gamma(p1, p2) and 61|02 ~ N(n1,m202) .

We also assume that 61,65 are a priori independent of b. We choose values for the hyperparameters
©1,92,M, and 79 that lead to a weakly informative prior. We set o1 = po = 0.1, 1 = 0, and
12 = 100. The sampling algorithm’s steps do not depend on the particular values we choose for the
hyperparameters, so we describe them in terms of generic values.

The dependent draws from the conditional distribution of all parameters and augmented data
m(01,602,b, Z,|N*) are obtained using a Gibbs sampler.

Let Qik), Qék), b%) | Z(*) be the sample values in the k-th iteration of the MCMC algorithm. The
starting values 050), 050), b are set equal to the values produced by the moment estimator method
and Z(©) is drawn using sampling importance resampling, as in the MCMC-EM initialization.

Thus, given ng),ﬁék),b(k), and Z®) | we obtain 0§k+1),9§k+1)7b(k+1), and Z*+1 using the fol-

lowing update scheme:
1. Fort=1,2,...,T, sample Z£k+1)|Nt*, 9§k), Hék), b(k) | Z(ft).
2. Sample 9§k+1),9§k+1), plkt1)| Z (k+1),
(a) Sample p*k+1)|ZE+1),
(b) Sample 65 |pk+1) | Z(k+1),
(c) Sample ("1 |g5*+ plktD) Z (4D,

In step 7 we use the acceptance-rejection algorithm described in section |3l In steps (2b)) and

the full conditionals are standard, since

T 1 _
0210, Z ~ Inv.Gamma (¢1 + 5#152 + 5(2 —mlr) (nlrlly +B) Y (Z - 7711T)> ,
1/.B~1Z 0
01]02,0,2 ~ N (D EITZ 2 ,
1 +7721TBil].T ].+7721TB711T



where 17 denotes the T-dimensional vector of ones. In contrast, step is not standard. To sample
from the conditional density of b given Z we use another accept-reject algorithm. The proposal is
the uniform prior itself; thus the upper bound between the target density and the proposal density
is the maximum of m(Z|b). Since the prior of (61,62) is a normal-inverse gamma distribution,

straightforward calculation yields Z|0s,b ~ Np (771 17, 02(nelrlly + B)) and then

7T(Z|b):/ / 71'(Z|91,02,b)7(‘(91,92)(191(192
02 01

. , too _agdr g 1 1 , , 1
o det™ 2 (nelrl —|—B)/ 0, 2 exp _@((;52 + i(Z —mlp) (nelerly + B) (Z — 7)11T)) do,
0
72¢1+T
1 1 2
O<‘31‘i‘t_é(7721T1/T+B) (1+2¢(Z_7711T)I(7721T1,T+B)1(Z_7711T)> . (11)
2

The expression above can be further simplified using the matrix determinant lemma, Sherman-
Morrison formula, and the closed-form expression for B~'. The latter is available because B is the

correlation matrix of a stationary autoregressive process of order 1.

Proposition 3. In the Gompertz model with Poisson sampling error distribution, the density of Z|b

8

S

1—

m(Zb) oc (1 —1r?) & ((ng(T —2) = 1)r? = 2mo(T — V)r + T + 1)_

_ T-1 T
r2 Z W3 —2r Z WiWhe1 + Z WE 9
w14 =2 h=1 t=1 _ n2(1—17)
2¢o (1 —12) (n2(T = 2) = 1)r2 = 2no(T — 1)r + 2T + 1

M=

T-1 2 T—-2 T
7,2( D Ws) —-2r 3 WSZWt—F(

s=2 t=1

2¢s (14 12)

t

2
Wt) S
1 )
(12)
where Wy = Zy —m1 and r =1+ b.

Proof. Let r =1+ b and W = Z — n;1p. Then |[Hamilton, 1994][Section 5.2

1 r r? ool
r 1 r rr=1
B = ,det(B) = (1 -1,
pIT-1 -2 T-3 T—4 1
_ , . _
—r 1472 —r
Bl = 1
T 1—1r2

—r 1472 —r

10



Using the matrix determinant lemma and Sherman-Morrison formula, it is obtained

det(nelrly + B) = det(B)(1 + no1, B~ 7),
B~ 1,14.B71

171+ B '=Bt—p— —"T—
(21717 + B) 7721+7721,TB,11T

This implies

1 1 W'B~1w 2 W'B~'171.B~'W
VAL det 2(B)(1 1.B7'10)7 2 (1 - . '
m(Z|b) o det™ 2 (B)(1 +n217B~'1r) ( L (14218 1r) 2 )
(13)

Consider separately 14121, B~ 17, It is straightforward that 17.B~117 is the sum of all components
of the matrix B~!; in this matrix there are (T' — 2), 2(T — 1), and two times 1 + r2, —r, and one

respectively. Then

14 mpllBp =1+ 1227«2 (24 (14 r2)(T — 2) — 2(T — 1))
=24 (rA(T-2)—2r(T - 1)+ T)
N 1—17r2
(n2(T —2) — 1)r? = 2mo(T — V)r + T + 1
- — . (14)

We now focus our attention on W’B~'W, which can be simplified as follows:

- -/ -

w,l [1 —r 0 - 0] [w]
—r 147 —r - 0
1 Wa . Wa
WBTIW = +—— 0 —r 1472 oo
: .
(Wr] |0 0 —r 1] |Wr]
'Wl' 2l Wy —rWsy i
(1 + TQ)WQ — T(Wl + Wg)
(1 + TQ)W;), - T(WQ + W4)
Wa .
T 1—1r2 1+ )Wy — r(Wi—g + Wisq)
W (1+’I‘2)WT,1 —’I”(WT,Q—FWT)
L L WT — T’WT71 |
1

T-1
WP = rWiWa + Wi — rWr_ Wr + > [(1 +rHW2 —rW,(We_y + Wsﬂ)])

s=2

1—1r2

1 T-1 T—1 T—1
=— (Z W2 —rWiWa =1 > W W —rWeWr, =1 Y WWeg +172 > Wf)

1—172
t=1 s=2 s=2 s=2

11



1 T-1 T-1 T
- 1 — g2 <T2 Z Wf —2r Z WsWei1 + Z Wt2> . (15)
s=2 s=2 t=1

Similarly, W/B~ 17 yields

Wi 1 —r 0 0 1
—r 1 2 - .0
X W, r —+7r r | 1
VV/B—11T:m 0 142 :
: r
(Wr] |0 0 —r 1] |1
I .
Wi 1—r
2
) W, re—2r+1
== 1_7‘2 ..
r2—2r+4+1
Wrl | 1-r |
T—1
(Wi + W) (1 —7)+ (1 —7)% > W,
_ s=2
o (I=r)(1+r)

M=

T-1
Wt - T Z WS
s=2

t=1

1+7r

Therefore,
W' B p1B7'W = (W'B~'1)?

T T—1 2
(z Wier's Ws)
t=1 s=2

(14+7r)2
(S W2 2 S WL S W (3 W)
_ s=2 §=2 t=1 t=1 (16)
(1+7)?

Finally, the form is obtained by substituting into the expressions , , and . O

It is important to note that equation is inexpensive to evaluate, as it is just a combination of
ratios and products of polynomials in b. This allows us to adopt the following two-step strategy. We
first perform a grid search for the maximum of w(Z|b), as a function of b. To this end, we compute
over a dense sequence of values of b, say —1.99,—1.98,...,—0.01, and set

by = arg max w(Z|b) .

b=—1.99,—1.98,...,—0.01

It is reasonable that the value of by is close to the global maximum of m(Zb). Then, we use the

12



L-BFGS-B algorithm to find the global maximum starting from by. Although this optimization
must be repeated at each iteration of the Gibbs sampler, our method is fast due to the simplicity
of expression ([2). In fact, as reported in Section the Gibbs sampler is much faster than the
MCMC-EM optimizer. Furthermore, as reported in the Supplementary Material, our proposed
Gibbs sampler is also faster than the state-of-the-art represented by the STAN implementation.

5 Numerical Experiments

The purpose of running the numerical experiments in this section is two-fold. First, we examine
the difference between the frequentist and Bayesian inferences, which can be informative when the
data has a modest size and we want to gauge the influence of the prior. Second, we provide proof-
of-concept for the algorithms proposed and examine their performance on data generated under
different scenarios, including one in which the sampling error distribution is misspecified. We also
consider a comparison between the Bayesian inference produced using the sampler we design here
and the one using a generic STAN implementation. The latter can be considered at this point state
of the art since, to our knowledge, no other MCMC sampler has been designed for this problem.
Finally, we illustrate these methods by analyzing a time series of American Redstart counts from

the Breeding Bird Survey data.

5.1 Simulations
5.1.1 Simulation scenarios

The simulation study evaluates the performance of the proposed method when the sampling model
is correct and when it is misspecified. Specifically, we generated time series of varying lengths under
the Poisson noise model and under a model with sampling errors that have a negative binomial
distribution. In addition, we varied the model parameters to examine the algorithms under different
scenarios. One of the scenarios has parameter values close to the estimates obtained in the Redstart
data analysis.

The data are fitted using the frequentist approach described in Section [3] and using the Bayesian
methods described in Section 4] In addition, Bayesian inference is produced using an off-the-shelf
STAN implementation.

We analyze data generated under eight simulation scenarios. Scenario S1 yields a moderate level
of serial correlation given by bf = —0.5, while setting S2 exhibits high levels of correlation given by
bt = —0.22. Based on the parameters estimates obtained from the Redstart data analysis, we fixed
91[ = 2 and 9; = 0.22, for both S1 and S2. We simulated these settings considering time series of
lengths T' = 30. The scenarios S3 and S4 use the same parameters as, respectively, S1 and S2, but
have T' = 100.

Scenarios S5 - S8 are produced using the same parameter values as, respectively, S1 - S4, but
use a misspecified sampling error model. Specifically, the sampling error was simulated using a
negative binomial distribution with mean exp(Z;) and variance 2 exp(Z;). These values were chosen

to provide a realistic comparison with the Poisson model. Note that a negative binomial with the
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mean and variance specified above corresponds to one with a success probability of 0.5 and the
dispersion (size) parameter selected so that the mean equals exp(Z;). As the probability of success
p approaches zero, the negative binomial distribution converges to a Poisson distribution with the
same mean. Thus, setting p = 0.5 ensures that the model is sufficiently different to illustrate the
impacts of misspecification. For each setting, we then computed the mean square error (MSE) and
the coverage of the 95% confidence and credible intervals, for every parameter in each scenario.
The simulation analysis is conducted with 500 independent replicates, and for the Bayesian
methods, each replicate is based on an MCMC sample of size 10,000. In addition, we report the
effective sample sizes obtained by our sampler and STAN. Finally, we compute and report summaries

of computation times.
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Figure 1: Results for the correctly specified model with Poisson distributed errors: Mean
square error and 95% coverage by correlation setting for each parameter and time series length T
for scenarios S1 - S4. Within each sub-figure, columns represent parameters and rows represent
the different time series length T'. Results form the Gibbs sampler are shown with points and solid
lines results, results for the MLE approach are indicated by triangles and fine dashed lines, and
results for STAN are displayed with squares and bold dashed lines. In the MSE plots (left panels),
the central points/triangles indicate the mean values, and the error bars represent the 5th and 95th
percentiles. The coverage plots (right panels) show the coverage obtained using credible intervals
approximated from Gibbs samples (red points), STAN samples (green squares), and using Wald
confidence intervals obtained using the MLE and is asymptotic variance produced by MCMC-EM.

5.1.2 Simulation results

As expected, the analysis based on the three algorithms improves as the time series length increases.

Figure [I] presents the results for the correctly specified model with Poisson distributed errors. In
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Figure 2: Results for the misspecified model with Negative binomial distributed errors:
Mean square error and 95% coverage by correlation scenario for each parameter and time series
length T' for scenarios S5 - S8. Within each sub-figure, columns represent parameters and rows
represent the different time series length 7. Results form the Gibbs sampler are shown with points
and solid lines results, results for the MLE approach are indicated by triangles and fine dashed
lines, and results for STAN are displayed with squares and bold dashed lines. In the MSE plots
(left panels), the central points/triangles indicate the mean values, and the error bars represent
the 5th and 95th percentiles. The coverage plots (right panels) show the coverage obtained using
credible intervals approximated from Gibbs samples (red points), STAN samples (green squares),
and using Wald confidence intervals obtained using the MLE and is asymptotic variance produced
by MCMC-EM.

most cases, the MSE values across the three inference methods are similar. The uncertainty is
generally higher for the estimates of parameter b, lower for 6, and even lower for 5. An exception
occurs with STAN when 7' = 100, where the uncertainty for 6; is greater than for b. Furthermore,
for 65, the Gibbs sampler produced estimates with greater uncertainty compared to the other two
algorithms. In terms of coverage, all three inference methods yield values close to 0.95 for the
parameter b. However, the MLE approach shows lower coverage, particularly when 7' = 30 and the
correlation is high. This is likely due to the sample size being too small for the asymptotic variance
estimate to be reliable. When T' = 100, the Gibbs sampler demonstrates the most accurate coverage
across all parameters and correlation scenarios.

The results for the misspecified case are shown in Figure [2| In this setting, the performance of
the algorithms differs noticeably between the high and moderate correlation scenarios. When the
correlation is lower, the three algorithms exhibit improved performance, with lower MSE, reduced
uncertainty, and more accurate coverage across all parameters and both sample sizes. Again, higher

uncertainty is observed for the estimates of b and 6, and lower uncertainty for 5. Moreover, when

15



b C &
3.0
0.004 _ + 1
1.0-
(%]
Q 2.5
o+
S -0.25 T
£
-~ 05-
4 204 ¢ )
-0.50 - i
T 1.5+ = 0.04 T -
0754+ ! ! . . ! ! !
Gibbs MLE STAN Gibbs MLE STAN Gibbs MLE STAN

Figure 3: Point estimates for the three parameters obtained using each inference method. For the
two Bayesian methods, the error bars represent the 95% credible intervals, while for the MLE, they
indicate the Wald 95% confidence intervals .

T =100, the Gibbs sampler provides the most accurate coverage for all parameters.

1st Quantile Mean Median 3rd Quantile

Gibbs 1.33 1.33 1.33 1.34
MLE 9.21 11.82 11.23 13.38
STAN 6.98 7.66 7.09 7.31

Table 1: Summary statistics of the computational times (in minutes) under scenario S4

The computational times for scenario S4 are reported in Table [Il The MLE approach was the
slowest, taking between two and nine times longer tan the other two. The Gibbs sampler outperforms
STAN in terms of speed, with a mean computation time that is approximately five times shorter.
The other scenarios exhibited similar patterns and are presented in the Supplementary Material.
Finally, a comparison of the effective sample sizes for the three parameters across the two Bayesian
inference methods is also provided there. In all cases, the Gibbs sampler outperformed STAN,
yielding effective samples sizes per second that were around 1.5 to 3.5 times larger. This is of course
not surprising, since the algorithm presented here has been designed specifically for this problem,

while STAN is a sampling algorithm which is able to tackle a wide variety of models.

5.2 Real data analysis

We analyze here the American Redstart counts dataset which was previously discussed by 12000]
and Dennis et al| [2006]. This data set is recorded with the number 0214332808636 in the North
American Breeding Bird Survey [Peterjohn) 1994, Robbins et all [1986] and contains the number

of specimens observed from 1966 to 1995 at a survey location. We fit the Gompertz model with
Poisson-distributed errors to this dataset using both the Gibbs sampler and the MLE approach
proposed here. STAN was also used as a baseline for comparison within the Bayesian framework.

We computed point estimates for the three parameters, along with the 95% credible intervals for
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Figure 4: Autocorrelation functions of the posterior samples for the three parameters under both
Bayesian inference methods.
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0 0

b 0, 02

Gibbs 1106.8 8239.5 10000
STAN 2094 30.3 583.4

Table 2: Effective sample sizes for the three parameters from the analysis of the American Redstart
for both Bayesian inference methods

the Bayesian methods and the 95% confidence intervals based on Gaussian approximation for the
MLE approach (Figure [3). For the two Bayesian methods, we also calculated the effective sample
size and autocorrelation function (Figure [4)) for each parameter (Table .

Although the Gibbs sampler shows greater uncertainty in the estimation of s, the point estimates
across the three methods remain comparable. However, when examining the effective sample size
and autocorrelation functions of the posterior distributions for the two Bayesian methods, the Gibbs
sampler demonstrates superior performance. The effective sample size for 05 is nearly twice as large
with the Gibbs sampler, six times larger for b, and increases for , from only 30 in STAN to more
than 8200 with the Gibbs sampler.

6 Discussion

We develop full-likelihood-based inference within the frequentist and Bayesian paradigms for the
Gompertz model with Poisson sampling errors. The proposed approaches remove the need to con-
sider pseudo-likelihood methods that mitigate computational challenges at the price of reducing the
information provided by the data.

In our future work, we would like to investigate whether similar developments can be produced

to modified versions of the model considered here. The latter can be created by modifying the
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growth curve by adding parameters that allow curvature and long-term behavior |Asadi et al., [2023]
or when the population dynamics is determined by a stochastic differential equation as in [Donnet;
et al.| [2010].
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Code

The developed methods are available in a new R package: gse. The new R package and the scripts of

Section[f|are available online on GitHub at the following link: https://github.com/sofiar/GMLossF
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Supplement: Extra Figures and Tables

Correctly specified model

Misspecified model
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Figure 1: Effective sample size per second obtained from the simulation analysis for both Bayesian inference meth-
ods for each parameter and time series length T. Results form the Gibbs sampler are shown with solid red lines,
while those from STAN are displayed with green dashed lines.

Correctly specified model

1st Quantile Mean Median 3rd Quantile Scenario
Gibbs 0.44 0.45 0.45 0.46 S1
MLE 3.43 4.82 4.11 5.41 S1
STAN 0.57 0.97 0.76 0.97 S1
Gibbs 0.43 0.44 0.44 0.44 S2
MLE 3.04 4.16 3.48 4.55 S2
STAN 0.53 0.7 0.57 0.8 S2
Gibbs 1.32 1.34 1.33 1.37 S3
MLE 11.46 14.5 13.58 16.87 S3
STAN 8.77 12.7 11.82 14.87 S3

Table 1: Summary statistics of the computational times (in minutes) under scenarios S1-S3



Misspecified model

1st Quantile Mean Median 3rd Quantile Scenario

Gibbs 0.44 0.45 0.45 0.46 S1
MLE 3.02 3.9 3.49 4.05 S1
STAN 0.53 0.67 0.58 0.72 S1
Gibbs 0.43 0.44 0.44 0.45 S2
MLE 3.04 3.9 3.59 4.36 S2
STAN 0.53 0.69 0.56 0.76 S2
Gibbs 1.33 1.36 1.37 1.39 S3
MLE 10.06 12.12 11.59 13.97 S3
STAN 7.04 7.71 7.15 3.37 S3
Gibbs 1.33 1.34 1.34 1.35 S4
MLE 9.49 11.83 11.24 13.29 S4
STAN 7 7.66 7.11 7.36 S4

Table 2: Summary statistics of the computational times (in minutes) under scenarios S1-S4
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