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Abstract

Population dynamics models play an important role in a number of fields, such as actuarial

science, demography, and ecology. Statistical inference for these models can be difficult when,

in addition to the process’ inherent stochasticity, one also needs to account for sampling error.

Ignoring the latter can lead to biases in the estimation, which in turn can produce erroneous

conclusions about the system’s behavior. The Gompertz model is widely used to infer population

size dynamics, but a full likelihood approach can be computationally prohibitive when sampling

error is accounted for. We close this gap by developing efficient computational tools for statistical

inference in the Gompertz model based on the full likelihood. The approach is illustrated in

both the Bayesian and frequentist paradigms. Performance is illustrated with simulations and

data analysis.

Keywords: Bayesian inference, EM algorithm, MCMC, Sampling error.

1 Introduction

Population dynamics models are crucial in both applied and theoretical ecology, because they help

to explain past population fluctuations and project future population abundances [Newman et al.,

2014]. These models are used to manage the conservation of species, understand the dynamics of

biological invasions, and assess the response of certain species to changes in their environment which

can range from those produced by human developments to those triggered by climate change. The

accuracy and reliability of these models are often affected by two major components of uncertainty

due to: i) the process’ stochasticity connected to, say, demographic and environmental factors, and

ii) the sampling error.

Ecologists have long recognized the importance of separating observation from process error in

ecological modeling, and significant progress has been achieved through the use of state-space models

to analyze time series of population fluctuations [Dennis et al., 2006, Hostetler and Chandler, 2015,

Auger-Méthé et al., 2021]. However, including both process noise and observation error in the model

remains challenging, as it produces significant computational difficulties. To illustrate, Staples et al.
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[2004] note that the sampling error adds to the variability in the data leading to positively biased

estimators of process variation and propose a restricted maximum likelihood estimation of the latter

and of the error variance. Subsequently, [Lindén and Knape, 2009] show empirically that observation

errors can change the autocorrelation structure of a time series with potential biases resulting from

models that ignore such errors.

The Gompertz model [Gompertz, 1825] is widely used to describe and characterize population

dynamics. Its use permeates multiple disciplines, including actuarial science [e.g., Butt and Haber-

man, 2004, Baione and Levantesi, 2018], demography [e.g., Alexander et al., 2017, Tai and Noymer,

2018], as well as in life sciences where it can be used to model the growth patterns of animals, plants,

tumors and the volume of bacteria [Winsor, 1932, Tjørve and Tjørve, 2017]. Most importantly, the

Gompertz model can be modified to account for sampling variability and, in some clearly structured

problems, it is possible to explicitly formulate the likelihood function in the presence of sampling

error. For example, if the observation noise is assumed to follow a log-normal distribution, it is

feasible to write the likelihood function [Staples et al., 2004] and the model can be transformed

into a linear Gaussian state-space model which can be fitted using the Kalman filter [Dennis et al.,

2006]. However, if the sampling error is not log-normal, the expression of the likelihood becomes

more complex. Relevant for this paper is the study of Lele [2006] which shows that likelihood-based

inference for a stationary Gompertz model with Poisson sampling errors requires the calculation of

a high-dimensional integral that brings on a prohibitive computational burden. He proposes a com-

posite likelihood approach that reduces the dimension of the integral and makes the computation

manageable for longer time series. However, replacing the full likelihood with a composite one comes

with an inferential cost because the resulting confidence, or credible, intervals will not have nominal

coverage.

The main contribution of this paper is the construction of algorithms that allow for a full

likelihood-based analysis of the Gompertz model with Poisson errors. Central to our approach is

an efficient algorithm for computing the likelihood, which allows us to conduct both frequentist and

Bayesian inference. The developed methods are available in a new R package published on GitHub.

The paper is organized as follows. In Section 2 we introduce the notation and the statistical model.

Section 3 contains the estimation procedure for a frequentist approach based on a simulation-aided

EM algorithm [Dempster et al., 1977, Wei and Tanner, 1990]. The Bayesian analysis relies on a new

MCMC sampler which is described in Section 4. The paper continues with a Section 5 of numerical

experiments that includes simulations and a data analysis. A discussion of open questions and future

research directions closes the paper in Section 6.

2 Statistical Model

Consider a population observed at times t = 1, 2, . . . , T . The Gompertz model with stochastic errors

establishes a probabilistic model for the evolution of Nt, the population size at time t, for 1 ≤ t ≤ T .

Specifically, assume that for all 1 ≤ t ≤ T − 1,

Nt+1 = Nt exp(a+ b log(Nt) + εt+1), (1)
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where a is an individual intrinsic growth rate parameter, b links the current measure with the

past one, and εt are independent errors normally distributed: εt ∼ N(0, σ2). The logarithmic

transformation of Nt in (1) leads to

Zt+1 = a+ (1 + b)Zt + εt+1 (2)

where Zt = log(Nt). Equation (2) implies that the Gompertz model corresponds, on the logarithmic

scale, to an autoregressive process of order 1. If we assume that |1 + b| < 1, then for any subset of

n observations, the n-dimensional marginal distribution of the log transformed population size, Zt,

has a multivariate normal distribution (Zi1 , Zi2 , . . . , Zin)
′ ∼ Nn(µ,Σ) where

µ = (θ1, θ1, . . . , θ1)
′ , Σ = θ2B , and Bjk = (1 + b)|ij−ik| (3)

and θ1 = −a/b and θ2 = −σ2/
[
b(2 + b)

]
. In what follows, we denote θ = (θ1, θ2, b).

In this paper, we consider the case where the exact population size Nt is unknown. Instead, we

assume that at time t ∈ {1, . . . , T}, N∗
t is the observed population size, whose conditional probability

mass function is denoted π(N∗
t |Nt, ϕ) and is indexed by the parameter ϕ. Furthermore, we assume

that the random variables {N∗
t | 1 ≤ t ≤ T} are independent conditionally on {Nt : 1 ≤ t ≤ T}. The

observed-data likelihood is obtained by taking advantage of the conditional distribution of N∗
t |Nt

and averaging the missing true population values {N1, . . . , NT }.

L(θ, ϕ|N∗) =

∫ ∫
· · ·

∫
π(N∗

1 |N1, ϕ)π(N
∗
2 |N2, ϕ) . . . π(N

∗
T |NT , ϕ)π(N |θ) dN1 dN2 . . . dNT , (4)

where π(N |θ) indicates the joint distribution of the unobserved time series of exact population sizes.

If the sampling error distribution π(N∗
t |Nt, ϕ) is assumed to be log-normal, then it is possible to

explicitly formulate the complete likelihood function as in Dennis et al. [2006]. However, for other

sampling error distributions, the likelihood (4) cannot be expressed in closed form using elementary

functions. Here we focus on the case of a Poisson sampling error distribution, i.e. N∗
t ∼ Poisson(Nt),

for all 1 ≤ t ≤ T . In this case, no additional parameters, ϕ, are associated with the sampling error

distribution. However, the use of a Poisson distribution leads to computational challenges because

the likelihood is not available in closed form, as discussed by [Lele, 2006]. In Section 3 we present a

method for directly addressing the expression (4) to perform parameter inference. Our approach is

very general and can also be implemented in a Bayesian framework, as we show in Section 4. The

performance of the proposed algorithms is examined in Section 5.1.

3 Maximum likelihood based inference

We describe a frequentist inferential method for the Gompertz model with Poisson observation errors.

In particular, we are interested in computing the maximum likelihood estimator (MLE) for θ and

producing confidence intervals. The proposed algorithm takes advantage of the data augmentation

strategy implied by (4). It is apparent that if the population sizes N were available, then the
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inference would be straightforward, since it would rely on the analysis of a first-order autoregressive

model for Zt = logNt. However, since population sizes Nt, t ∈ {1, 2, ..., T} are unobserved latent

variables, we adopt a data augmentation approach.

The expectation-maximization (EM) algorithm is a powerful iterative procedure that is used to

estimate the parameters of models with missing data. In our case, N∗ is the vector of observed

data, Z = logN is the vector of missing data, and θ(k) is the value of the parameter estimate

in the k-th iteration. The EM algorithm [Dempster et al., 1977] iteratively computes θ(k+1) =

argmaxθ Q(θ|θ(k)) where the Q function is

Q(θ|θ(k)) = E[log π(N∗,Z|θ)|N∗,θ(k)] .

The calculation of the conditional expectation of the complete data log-likelihood, log π(N∗,Z|θ),

represents the E-step and its optimization as a function of θ is the M-step. The algorithm cycles

between the E- and M-steps until the change in θ(k) becomes negligible.

In the specific case of the Gompertz model with Poisson sampling error, the complete data

log-likelihood can be separated as

log π(N∗,Z|θ) = log π(N∗|Z) + log π(Z|θ) ,

and only the second term depends on θ. Nonetheless, we cannot compute the expectation required

in the E-step in closed form, so a Monte Carlo strategy must be used. Specifically, we approximate

the expectation with a Monte Carlo average

E[log π(Z|θ)|N∗,θ = θ(k)] ≈
1

J

J∑

j=1

log π(Z̃j |θ) , (5)

where Z̃j are sampled from Z|N∗,θ = θk. Replacing the expectation with a Monte Carlo estimate

is the idea behind the so-called Monte Carlo EM (MCEM) introduced by Wei and Tanner [1990]

and further expanded by McCulloch [1994], Chan and Ledolter [1995], Booth and Hobert [1999],

and Caffo et al. [2005].

We start the MCEM algorithm with a value of J = 103 in (5) and, as prescribed by Booth

and Hobert [1999] and Caffo et al. [2005], we increase the value of J with the number of iterations

in order to achieve higher precision in the estimate of the expected complete data log-likelihood.

Specifically, we use the method proposed in Caffo et al. [2005] to determine whether an increase in

J is necessary or not. If so, we double the current value of J up to a maximum value of 2 × 104.

The conditional distribution Z|N∗,θ = θ(k) is nonstandard, so we must customize a Gibbs sampler

to obtain the necessary draws. In the following, we omit the superscript (k) for ease of notation.

According to the Gibbs sampler design, we need to obtain samples from the full conditional

distributions of each latent variable, given the observed data, the current parameter values, and the

remaining unobserved population sizes. For brevity, we denote Z−t the vector Z from which the t
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-th component, Zt is excluded. Thus, we need to sample from

Zt|Z−t,N
∗,θ =





Z1|Z2, N
∗
1 ,θ if t = 1

Zt|Zt−1, Zt+1, N
∗
t ,θ if 1 < t < T

ZT |ZT−1, N
∗
T ,θ if t = T

. (6)

The expression above exploits the independence of the components of N∗ conditionally on Z and

the sparse structure of the inverse of the correlation matrix B. These facts dramatically improve

the mixing of the Gibbs sampler.

From expression (6), we obtain the unnormalized density for every full conditional distribution

of Zt, that is,

π(Zt|Z−t,N
∗,θ) ∝





π(N∗
1 |Z1)π(Z1|Z2,θ) if t = 1

π(N∗
t |Zt)π(Zt|Zt−1, Zt+1,θ) if 1 < t < T

π(N∗
T |ZT )π(ZT |ZT−1,θ) if t = T

, (7)

and the second factor in the above expression is always a Gaussian density with mean µt and variance

τ2t given by

µt =





θ1σ
2+(Z2−a)(1+b)θ2
σ2+(1+b)θ2

if t = 1

a+(1+b)(Zt+1+Zt−1−a)
1+(1+b)2 if 1 < t < T

a+ (1 + b)ZT−1 if t = T

, τ2t =





σ2θ2
σ2+(1+b)θ2

if t = 1

σ2

1+(1+b)2 if 1 < t < T

σ2 if t = T

, (8)

Therefore, expression (7) is equal to the product between a Gaussian density and a Poisson mass

probability, so that

π(Zt|Z−t,N
∗,θ) ∝ exp

(
−eZt −

(Zt − µt)
2

2τ2t

)
, (9)

where µt and τ2t are given by (8) and channel the dependence between Zt and Z−t.

We sample from the above density using an accept-reject algorithm with a N(ξ, ω2) serving as

the proposal density. The following proposition provides the upper bound between the target and

the proposal and, in the special case of ω2 = τ2t , the best value for ξ.

Proposition 1. Using the above notation the following hold:

i) The ratio between expression (9) and the density of N(ξ, ω2) is unbounded if ω2 < τ2t .
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ii) If ω2 ≥ τ2t then there exits an unique maximum equal to

Ẑt =





log
(

N∗

t τ
2
t −ξ+µt

τ2
t

)
if ω2 = τ2t

N∗

t ω
2τ2

t −ξτ2
t +µω2

ω2−τ2
t

W0

(
ω2τ2

ω2−τ2
t

exp
(

N∗

t ω
2τ2

t −ξτ2
t +µω2

ω2−τ2
t

))
if ω2 > τ2t

,

where W0 denotes the upper branch of the Lambert W function.

iii) When ω2 = τ2t the value of ξ that minimizes the maximum Ẑt is

ξ̂ = N∗
t τ

2
t + µt −W0

(
τ2t exp(N∗

t τ
2
t + µt)

)
.

Proof. i) The ratio between the target and the proposal density is proportional to

h(Zt) = exp

(
ZtN

∗
t − eZt −

(Zt − µt)
2

2τ2t
+

(Zt − ξ)2

2ω2

)
. (10)

It is easy to show that is unbounded if ω2 < τ2t .

ii) We compute the first and second log-derivative and obtain

d log h(Zt)

dZt

= N∗
t +

Zt − ξ

ω2
−

Zt − µt

τ2t
− eZt ,

d2 log h(Zt)

dZ2
t

=
1

ω2
−

1

τ2t
− eZt .

Therefore, the second derivative is always negative as long as ω2 ≥ τ2t ; in this case h(·) is log-concave

and the unique maximum occurs at the value Zt = Ẑt where the first derivative is equal to 0. When

ω2 ≥ τ2t , setting the first derivative to 0 yields:

eẐt =
N∗

t ω
2τ2t − ξτ2t + µtω

2

ω2τ2t
− Ẑt

ω2 − τ2t
ω2τ2t

.

If we settle on ω2 > τ2t , after some algebra we obtain

Ẑt =
N∗

t ω
2τ2t − ξτ2t + µω2

ω2 − τ2t
W0

(
ω2τ2

ω2 − τ2t
exp

(
N∗

t ω
2τ2t − ξτ2t + µω2

ω2 − τ2t

))
,

where W0 denotes the upper branch of the Lambert W function. However, this solution is cumber-

some to work with and, more importantly, does not guarantee a more efficient solution.

iii) If we set ω2 = τ2t we obtain

Ẑt = log

(
N∗

t τ
2
t − ξ + µt

τ2t

)
.

Replacing ω2 = τ2t in (10) we obtain

log h(Ẑt) = ẐtN
∗
t +

(Ẑt − ξ)2 − (Ẑt − µt)
2

2τ2t
− eẐt .
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The value ξ̂ which minimizes log h(Ẑt) is found using

d log h(Ẑt)

dξ
=

d log h(x)

dx

∣∣∣∣∣
x=Ẑt

dẐt

dξ
+

d log h(x)

dξ

∣∣∣∣∣
x=Ẑt

=
d log h(x)

dξ

∣∣∣∣∣
x=Ẑt

= −
Ẑt − ξ

τ2t
.

Since the second derivative is always positive, log h(Ẑt) is a log-convex function with an unique

minimum at ξ = Ẑt. However, since Ẑt is itself a function of ξ, from the following condition

ξ = log

(
N∗

t τ
2
t − ξ + µt

τ2t

)
,

after some algebra, we obtain the final expression

ξ̂ = N∗
t τ

2
t + µt −W0

(
τ2t exp(N∗

t τ
2
t + µt)

)
.

The proposed algorithm falls within the class of Markov chain Monte Carlo EM (MCMC-EM)

since it is an MCEM optimization algorithm in which the draws required to complete the E-step

are obtained using the Gibbs sampler. For the efficiency of the algorithm, it is important to choose

carefully the initialization point. Regarding the starting point θ(0), we set it equal to the method

of moments estimator that is provided by the following proposition.

Proposition 2. In the Gompertz model with Poisson sampling error distribution, the mean, variance

and covariances for {N∗
t , 1 ≤ t ≤ T} are:

i) E(N∗
t ) = exp

(
θ1 +

θ2
2

)
,

ii) Var(N∗
t ) = exp

(
2θ1 + θ2

)(
exp

(
θ2
)
− 1
)
,

iii) Cov(N∗
t , N

∗
t+h) = exp

(
2θ1 + θ2

)(
exp

(
θ2(1 + b)h

)
− 1
)
.

Proof. Equation (3) implies

E(Zt) = θ1 , Var(Zt) = θ2 , Cov(Zt, Zt+h) = θ2(1 + b)|h| .

On the other hand, Nt = exp(Zt) and based on the from the expression for the moment generating

function of a Gaussian random variable, we get

E
(
exp(cZt)

)
= exp

(
cθ1 +

c2θ2
2

)
,
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and thus the following expressions hold

E(Nt) = E
(
exp(Zt)

)
= exp

(
θ1 +

θ2
2

)
,

Var(Nt) = E
(
exp(2Zt)

)
− E

2
(
exp(Zt)

)
= exp(2θ1 + θ2)(exp(θ2)− 1) ,

Cov(Nt, Nt+h) = E
(
exp(Zt + Zt+h)

)
− E

2
(
exp(Zt)

)
= exp

(
2θ1 + θ2

)(
exp(θ2(1 + b)h)− 1

)
.

The last expression is valid because Zt + Zt+h ∼ N
(
2θ1, 2θ2(1 + (1 + b)h)

)
and E

(
exp(Zt)

)
=

E
(
exp(Zt+h)

)
. Furthermore, since N∗

t |Nt
ind
∼ Po(Nt) we have E(N∗

t |Nt) = Var(N∗
t |Nt) = Nt and

Cov(N∗
t , N

∗
t+h|Nt, Nt+h) = 0 due to conditional independence. Using the law of total expectation,

the law of total variance and the law of total covariance is easy to obtain the first two moments for

N∗
t , as

E(N∗
t ) = E

(
E(N∗

t |Nt)
)
= exp

(
θ1 +

θ2
2

)
,

Var(N∗
t ) = E

(
Var(N∗

t |Nt)
)
+Var

(
E(N∗

t |Nt)
)
= exp

(
2θ1 + θ2

)(
exp

(
θ2
)
− 1
)
,

Cov(N∗
t , N

∗
t+h) = E

(
Cov(N∗

t , N
∗
t+h|Nt, Nt+h)

)
+Cov

(
E(N∗

t |Nt),E(N
∗
t+h|Nt+h)

)

= exp
(
2θ1 + θ2

)(
exp

(
θ2(1 + b)h

)
− 1
)
.

We set the starting point θ(0) in order to match the first two moments provided by the above

proposition with their sample counterparts. Regarding the covariance, we set h = 1 because the

first lag is the most efficient to estimate.

We use a sampling importance resampling strategy for the initialization of Z. The importance

density is equal to

q(Z) = π
(
Z1|N

∗
1 , Z2 = log(N∗

2 )
)
π
(
Z2|N

∗
2 , Z1, Z3 = log(N∗

3 )
)
. . .

× π
(
Zt−1|N

∗
t−1, Zt−2, Zt = log(N∗

t )
)
π
(
Zt|N

∗
t , Zt−1

)
.

Thus, the importance density for Zt is equal to its full conditional used in the Gibbs sampler; the full

conditional is obtained setting Zt+1 = log(N∗
t+1). Therefore, we draw 10, 000 values of Z from q(·)

and compute the importance weights. The initial value is then selected with probability proportional

to these weights.

The proposed MCMC-EM method can be used computing the asymptotic variance of the MLE

too. As noted in Caffo et al. [2005], it is easy to use the output of the sampling algorithm to calculate

the inverse of the Fisher information matrix using the method of Louis [1982]. This allows us to

produce asymptotic variance estimates for θ̂.
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4 Bayesian Inference

The Bayesian paradigm offers a different probabilistic mechanism to estimate finite sample variances

for the estimators of interest, allows principled ways to incorporate prior knowledge when it is

available, and to integrate model uncertainty into the predictions via model averaging. The crux of

the approach is the posterior distribution which encodes all the uncertainty after observing the data.

In the Gompertz model with Poisson errors, the posterior distribution is analytically intractable, so

we must study it using MCMC sampling. The data augmentation strategy presented in Section 3

also plays a central role in the design of the MCMC algorithm. Perhaps surprisingly, the numerical

experiments show that the algorithm for sampling the Bayesian posterior is much more efficient than

the MCMC-EM in terms of computation time.

To perform a fair comparison with the MLE, we propose using a weakly informative prior. We

use an uniform prior for b, that is, b ∼ U(−2, 0), and normal-inverse gamma priors for θ1 and θ2,

θ2 ∼ Inv.Gamma(φ1, φ2) and θ1|θ2 ∼ N(η1, η2θ2) .

We also assume that θ1, θ2 are a priori independent of b. We choose values for the hyperparameters

φ1, φ2, η1, and η2 that lead to a weakly informative prior. We set φ1 = φ2 = 0.1, η1 = 0, and

η2 = 100. The sampling algorithm’s steps do not depend on the particular values we choose for the

hyperparameters, so we describe them in terms of generic values.

The dependent draws from the conditional distribution of all parameters and augmented data

π(θ1, θ2, b,Z, |N∗) are obtained using a Gibbs sampler.

Let θ
(k)
1 , θ

(k)
2 , b(k),Z(k) be the sample values in the k-th iteration of the MCMC algorithm. The

starting values θ
(0)
1 , θ

(0)
2 , b(0) are set equal to the values produced by the moment estimator method

and Z(0) is drawn using sampling importance resampling, as in the MCMC-EM initialization.

Thus, given θ
(k)
1 , θ

(k)
2 , b(k), and Z(k), we obtain θ

(k+1)
1 , θ

(k+1)
2 , b(k+1), and Z(k+1) using the fol-

lowing update scheme:

1. For t = 1, 2, . . . , T , sample Z
(k+1)
t |N∗

t , θ
(k)
1 , θ

(k)
2 , b(k),Z

(k)
−t .

2. Sample θ
(k+1)
1 , θ

(k+1)
2 , b(k+1)|Z(k+1).

(a) Sample b(k+1)|Z(k+1).

(b) Sample θ
(k+1)
2 |b(k+1),Z(k+1).

(c) Sample θ
(k+1)
1 |θ

(k+1)
2 , b(k+1).Z(k+1).

In step (1), we use the acceptance-rejection algorithm described in section 3. In steps (2b) and (2c)

the full conditionals are standard, since

θ2|b,Z ∼ Inv.Gamma

(
ϕ1 +

T

2
, ϕ2 +

1

2
(Z − η11T )

′(η21T 1
′
T +B)−1(Z − η11T )

)
,

θ1|θ2, b,Z ∼ N

(
η1 + η21

′
TB

−1Z

1 + η21′TB
−11T

,
η2θ2

1 + η21′TB
−11T

)
,

9



where 1T denotes the T -dimensional vector of ones. In contrast, step (2a) is not standard. To sample

from the conditional density of b given Z we use another accept-reject algorithm. The proposal is

the uniform prior itself; thus the upper bound between the target density and the proposal density

is the maximum of π(Z|b). Since the prior of (θ1, θ2) is a normal-inverse gamma distribution,

straightforward calculation yields Z|θ2, b ∼ NT

(
η11T , θ2(η21T 1

′
T +B)

)
and then

π(Z|b) =

∫

θ2

∫

θ1

π(Z|θ1, θ2, b)π(θ1, θ2)dθ1dθ2

∝ det−
1
2 (η21T 1

′
T +B)

∫ +∞

0

θ
−

2ϕ1+T

2
−1

2 exp

(
−

1

θ2

(
ϕ2 +

1

2
(Z − η11T )

′(η21T 1
′
T +B)−1(Z − η11T )

))
dθ2

∝ det−
1
2 (η21T 1

′
T +B)

(
1 +

1

2ϕ2
(Z − η11T )

′(η21T 1
′
T +B)−1(Z − η11T )

)−
2ϕ1+T

2

. (11)

The expression above can be further simplified using the matrix determinant lemma, Sherman-

Morrison formula, and the closed-form expression for B−1. The latter is available because B is the

correlation matrix of a stationary autoregressive process of order 1.

Proposition 3. In the Gompertz model with Poisson sampling error distribution, the density of Z|b

is

π(Z|b) ∝
(
1− r2

)1−T
2

((
η2(T − 2)− 1

)
r2 − 2η2(T − 1)r + η2T + 1

)− 1
2

×

(
1 +

r2
T−1∑
s=2

W 2
s − 2r

T−1∑
h=1

WhWh+1 +
T∑

t=1
W 2

t

2ϕ2 (1− r2)
−

η2(1− r2)(
η2(T − 2)− 1

)
r2 − 2η2(T − 1)r + η2T + 1

×

r2
( T−1∑

s=2
Ws

)2
− 2r

T−2∑
s=2

Ws

T∑
t=1

Wt +
( T∑

t=1
Wt

)2

2ϕ2 (1 + r2)

)−ϕ1−
T
2

,

(12)

where Wt = Zt − η1 and r = 1 + b.

Proof. Let r = 1 + b and W = Z − η11T . Then [Hamilton, 1994][Section 5.2]

B =




1 r r2 . . . rT−1

r 1 r . . . rT−1

. . . . . . . . . . . . . . .

rT−1 rT−2 rT−3 rT−4 1




, det(B) = (1− r2)T−1 ,

B−1 =
1

1− r2




1 −r

−r 1 + r2 −r

. . .
. . .

. . .

−r 1 + r2 −r

0 −r 1




.
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Using the matrix determinant lemma and Sherman-Morrison formula, it is obtained

det(η21T 1
′
T +B) = det(B)(1 + η21

′
TB

−11T ) ,

(η21T 1
′
T +B)−1 = B−1 − η2

B−11T 1
′
TB

−1

1 + η21′TB
−11T

.

This implies

π(Z|b) ∝ det−
1
2 (B)(1 + η21

′
TB

−11T )
− 1

2

(
1 +

W ′B−1W

2ϕ2
−

η2
(1 + η21′TB

−11T )

W ′B−11T 1
′
TB

−1W

2ϕ2

)
.

(13)

Consider separately 1+η21
′
TB

−11T . It is straightforward that 1′TB
−11T is the sum of all components

of the matrix B−1; in this matrix there are (T − 2), 2(T − 1), and two times 1 + r2, −r, and one

respectively. Then

1 + η21
⊤
TB

−11T = 1 +
η2

1− r2
(
2 + (1 + r2)(T − 2)− 2r(T − 1)

)

=
1− r2 + η2

(
r2(T − 2)− 2r(T − 1) + T

)

1− r2

=

(
η2(T − 2)− 1

)
r2 − 2η2(T − 1)r + η2T + 1

1− r2
. (14)

We now focus our attention on W ′B−1W , which can be simplified as follows:

W ′B−1W =
1

1− r2




W1

W2

...

WT




′ 


1 −r 0 · · · 0

−r 1 + r2 −r · · · 0

0 −r 1 + r2
. . .

...
...

...
. . .

. . . −r

0 0 · · · −r 1







W1

W2

...

WT




=
1

1− r2




W1

W2

...

WT




′



W1 − rW2

(1 + r2)W2 − r(W1 +W3)

(1 + r2)W3 − r(W2 +W4)
...

(1 + r2)Wt − r(Wt−1 +Wt+1)
...

(1 + r2)WT−1 − r(WT−2 +WT )

WT − rWT−1




=
1

1− r2

(
W 2

1 − rW1W2 +W 2
T − rWT−1WT +

T−1∑

s=2

[
(1 + r2)W 2

s − rWs(Ws−1 +Ws+1)
])

=
1

1− r2

(
T∑

t=1

W 2
t − rW1W2 − r

T−1∑

s=2

WsWs+1 − rWTWT1
− r

T−1∑

s=2

WsWs−1 + r2
T−1∑

s=2

W 2
s

)
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=
1

1− r2

(
r2

T−1∑

s=2

W 2
s − 2r

T−1∑

s=2

WsWs+1 +

T∑

t=1

W 2
t

)
. (15)

Similarly, W ′B−11T yields

W ′B−11T =
1

1− r2




W1

W2

...

WT




′ 


1 −r 0 · · · 0

−r 1 + r2 −r · · · 0

0 −r 1 + r2
. . .

...
...

...
. . .

. . . −r

0 0 · · · −r 1







1

1

...

1




=
1

1− r2




W1

W2

...

WT




′ 


1− r

r2 − 2r + 1

. . .

r2 − 2r + 1

1− r




=

(W1 +WT )(1− r) + (1− r)2
T−1∑
s=2

Ws

(1− r)(1 + r)

=

T∑
t=1

Wt − r
T−1∑
s=2

Ws

1 + r
.

Therefore,

W ′B−11T 1
′
TB

−1W = (W ′B−11T )
2

=

(
T∑

t=1
Wt − r

T−1∑
s=2

Ws

)2

(1 + r)2

=

r2(
T−1∑
s=2

Ws)
2 − 2r

T−1∑
s=2

Ws

T∑
t=1

Wt + (
T∑

t=1
Wt)

2

(1 + r)2
(16)

Finally, the form (12) is obtained by substituting into (13) the expressions (14), (15), and (16).

It is important to note that equation (12) is inexpensive to evaluate, as it is just a combination of

ratios and products of polynomials in b. This allows us to adopt the following two-step strategy. We

first perform a grid search for the maximum of π(Z|b), as a function of b. To this end, we compute

(12) over a dense sequence of values of b, say −1.99,−1.98, . . . ,−0.01, and set

b0 = arg max
b=−1.99,−1.98,...,−0.01

π(Z|b) .

It is reasonable that the value of b0 is close to the global maximum of π(Z|b). Then, we use the

12



L-BFGS-B algorithm to find the global maximum starting from b0. Although this optimization

must be repeated at each iteration of the Gibbs sampler, our method is fast due to the simplicity

of expression (12). In fact, as reported in Section 5.1, the Gibbs sampler is much faster than the

MCMC-EM optimizer. Furthermore, as reported in the Supplementary Material, our proposed

Gibbs sampler is also faster than the state-of-the-art represented by the STAN implementation.

5 Numerical Experiments

The purpose of running the numerical experiments in this section is two-fold. First, we examine

the difference between the frequentist and Bayesian inferences, which can be informative when the

data has a modest size and we want to gauge the influence of the prior. Second, we provide proof-

of-concept for the algorithms proposed and examine their performance on data generated under

different scenarios, including one in which the sampling error distribution is misspecified. We also

consider a comparison between the Bayesian inference produced using the sampler we design here

and the one using a generic STAN implementation. The latter can be considered at this point state

of the art since, to our knowledge, no other MCMC sampler has been designed for this problem.

Finally, we illustrate these methods by analyzing a time series of American Redstart counts from

the Breeding Bird Survey data.

5.1 Simulations

5.1.1 Simulation scenarios

The simulation study evaluates the performance of the proposed method when the sampling model

is correct and when it is misspecified. Specifically, we generated time series of varying lengths under

the Poisson noise model and under a model with sampling errors that have a negative binomial

distribution. In addition, we varied the model parameters to examine the algorithms under different

scenarios. One of the scenarios has parameter values close to the estimates obtained in the Redstart

data analysis.

The data are fitted using the frequentist approach described in Section 3, and using the Bayesian

methods described in Section 4. In addition, Bayesian inference is produced using an off-the-shelf

STAN implementation.

We analyze data generated under eight simulation scenarios. Scenario S1 yields a moderate level

of serial correlation given by b† = −0.5, while setting S2 exhibits high levels of correlation given by

b† = −0.22. Based on the parameters estimates obtained from the Redstart data analysis, we fixed

θ†1 = 2 and θ†2 = 0.22, for both S1 and S2. We simulated these settings considering time series of

lengths T = 30. The scenarios S3 and S4 use the same parameters as, respectively, S1 and S2, but

have T = 100.

Scenarios S5 - S8 are produced using the same parameter values as, respectively, S1 - S4, but

use a misspecified sampling error model. Specifically, the sampling error was simulated using a

negative binomial distribution with mean exp(Zt) and variance 2 exp(Zt). These values were chosen

to provide a realistic comparison with the Poisson model. Note that a negative binomial with the
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mean and variance specified above corresponds to one with a success probability of 0.5 and the

dispersion (size) parameter selected so that the mean equals exp(Zt). As the probability of success

p approaches zero, the negative binomial distribution converges to a Poisson distribution with the

same mean. Thus, setting p = 0.5 ensures that the model is sufficiently different to illustrate the

impacts of misspecification. For each setting, we then computed the mean square error (MSE) and

the coverage of the 95% confidence and credible intervals, for every parameter in each scenario.

The simulation analysis is conducted with 500 independent replicates, and for the Bayesian

methods, each replicate is based on an MCMC sample of size 10, 000. In addition, we report the

effective sample sizes obtained by our sampler and STAN. Finally, we compute and report summaries

of computation times.

(a) MSE (b) Coverage

Figure 1: Results for the correctly specified model with Poisson distributed errors: Mean
square error and 95% coverage by correlation setting for each parameter and time series length T
for scenarios S1 - S4. Within each sub-figure, columns represent parameters and rows represent
the different time series length T . Results form the Gibbs sampler are shown with points and solid
lines results, results for the MLE approach are indicated by triangles and fine dashed lines, and
results for STAN are displayed with squares and bold dashed lines. In the MSE plots (left panels),
the central points/triangles indicate the mean values, and the error bars represent the 5th and 95th
percentiles. The coverage plots (right panels) show the coverage obtained using credible intervals
approximated from Gibbs samples (red points), STAN samples (green squares), and using Wald
confidence intervals obtained using the MLE and is asymptotic variance produced by MCMC-EM.

5.1.2 Simulation results

As expected, the analysis based on the three algorithms improves as the time series length increases.

Figure 1 presents the results for the correctly specified model with Poisson distributed errors. In
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(a) MSE (b) Coverage

Figure 2: Results for the misspecified model with Negative binomial distributed errors:
Mean square error and 95% coverage by correlation scenario for each parameter and time series
length T for scenarios S5 - S8. Within each sub-figure, columns represent parameters and rows
represent the different time series length T . Results form the Gibbs sampler are shown with points
and solid lines results, results for the MLE approach are indicated by triangles and fine dashed
lines, and results for STAN are displayed with squares and bold dashed lines. In the MSE plots
(left panels), the central points/triangles indicate the mean values, and the error bars represent
the 5th and 95th percentiles. The coverage plots (right panels) show the coverage obtained using
credible intervals approximated from Gibbs samples (red points), STAN samples (green squares),
and using Wald confidence intervals obtained using the MLE and is asymptotic variance produced
by MCMC-EM.

most cases, the MSE values across the three inference methods are similar. The uncertainty is

generally higher for the estimates of parameter b, lower for θ1, and even lower for θ2. An exception

occurs with STAN when T = 100, where the uncertainty for θ1 is greater than for b. Furthermore,

for θ2, the Gibbs sampler produced estimates with greater uncertainty compared to the other two

algorithms. In terms of coverage, all three inference methods yield values close to 0.95 for the

parameter b. However, the MLE approach shows lower coverage, particularly when T = 30 and the

correlation is high. This is likely due to the sample size being too small for the asymptotic variance

estimate to be reliable. When T = 100, the Gibbs sampler demonstrates the most accurate coverage

across all parameters and correlation scenarios.

The results for the misspecified case are shown in Figure 2. In this setting, the performance of

the algorithms differs noticeably between the high and moderate correlation scenarios. When the

correlation is lower, the three algorithms exhibit improved performance, with lower MSE, reduced

uncertainty, and more accurate coverage across all parameters and both sample sizes. Again, higher

uncertainty is observed for the estimates of b and θ1, and lower uncertainty for θ2. Moreover, when
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Figure 3: Point estimates for the three parameters obtained using each inference method. For the
two Bayesian methods, the error bars represent the 95% credible intervals, while for the MLE, they
indicate the Wald 95% confidence intervals .

T = 100, the Gibbs sampler provides the most accurate coverage for all parameters.

1st Quantile Mean Median 3rd Quantile

Gibbs 1.33 1.33 1.33 1.34
MLE 9.21 11.82 11.23 13.38
STAN 6.98 7.66 7.09 7.31

Table 1: Summary statistics of the computational times (in minutes) under scenario S4

The computational times for scenario S4 are reported in Table 1. The MLE approach was the

slowest, taking between two and nine times longer tan the other two. The Gibbs sampler outperforms

STAN in terms of speed, with a mean computation time that is approximately five times shorter.

The other scenarios exhibited similar patterns and are presented in the Supplementary Material.

Finally, a comparison of the effective sample sizes for the three parameters across the two Bayesian

inference methods is also provided there. In all cases, the Gibbs sampler outperformed STAN,

yielding effective samples sizes per second that were around 1.5 to 3.5 times larger. This is of course

not surprising, since the algorithm presented here has been designed specifically for this problem,

while STAN is a sampling algorithm which is able to tackle a wide variety of models.

5.2 Real data analysis

We analyze here the American Redstart counts dataset which was previously discussed by Lele [2006]

and Dennis et al. [2006]. This data set is recorded with the number 0214332808636 in the North

American Breeding Bird Survey [Peterjohn, 1994, Robbins et al., 1986] and contains the number

of specimens observed from 1966 to 1995 at a survey location. We fit the Gompertz model with

Poisson-distributed errors to this dataset using both the Gibbs sampler and the MLE approach

proposed here. STAN was also used as a baseline for comparison within the Bayesian framework.

We computed point estimates for the three parameters, along with the 95% credible intervals for
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Figure 4: Autocorrelation functions of the posterior samples for the three parameters under both
Bayesian inference methods.

b θ1 θ2

Gibbs 1106.8 8239.5 10000
STAN 209.4 30.3 583.4

Table 2: Effective sample sizes for the three parameters from the analysis of the American Redstart
for both Bayesian inference methods

the Bayesian methods and the 95% confidence intervals based on Gaussian approximation for the

MLE approach (Figure 3). For the two Bayesian methods, we also calculated the effective sample

size and autocorrelation function (Figure 4) for each parameter (Table 2).

Although the Gibbs sampler shows greater uncertainty in the estimation of θ2, the point estimates

across the three methods remain comparable. However, when examining the effective sample size

and autocorrelation functions of the posterior distributions for the two Bayesian methods, the Gibbs

sampler demonstrates superior performance. The effective sample size for θ2 is nearly twice as large

with the Gibbs sampler, six times larger for b, and increases for θ1, from only 30 in STAN to more

than 8200 with the Gibbs sampler.

6 Discussion

We develop full-likelihood-based inference within the frequentist and Bayesian paradigms for the

Gompertz model with Poisson sampling errors. The proposed approaches remove the need to con-

sider pseudo-likelihood methods that mitigate computational challenges at the price of reducing the

information provided by the data.

In our future work, we would like to investigate whether similar developments can be produced

to modified versions of the model considered here. The latter can be created by modifying the
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growth curve by adding parameters that allow curvature and long-term behavior [Asadi et al., 2023]

or when the population dynamics is determined by a stochastic differential equation as in Donnet

et al. [2010].
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Supplement: Extra Figures and Tables

Figure 1: Effective sample size per second obtained from the simulation analysis for both Bayesian inference meth-

ods for each parameter and time series length T . Results form the Gibbs sampler are shown with solid red lines,

while those from STAN are displayed with green dashed lines.

Correctly specified model

1st Quantile Mean Median 3rd Quantile Scenario

Gibbs 0.44 0.45 0.45 0.46 S1

MLE 3.43 4.82 4.11 5.41 S1

STAN 0.57 0.97 0.76 0.97 S1

Gibbs 0.43 0.44 0.44 0.44 S2

MLE 3.04 4.16 3.48 4.55 S2

STAN 0.53 0.7 0.57 0.8 S2

Gibbs 1.32 1.34 1.33 1.37 S3

MLE 11.46 14.5 13.58 16.87 S3

STAN 8.77 12.7 11.82 14.87 S3

Table 1: Summary statistics of the computational times (in minutes) under scenarios S1-S3

1



Misspecified model

1st Quantile Mean Median 3rd Quantile Scenario

Gibbs 0.44 0.45 0.45 0.46 S1

MLE 3.02 3.9 3.49 4.05 S1

STAN 0.53 0.67 0.58 0.72 S1

Gibbs 0.43 0.44 0.44 0.45 S2

MLE 3.04 3.9 3.59 4.36 S2

STAN 0.53 0.69 0.56 0.76 S2

Gibbs 1.33 1.36 1.37 1.39 S3

MLE 10.06 12.12 11.59 13.97 S3

STAN 7.04 7.71 7.15 3.37 S3

Gibbs 1.33 1.34 1.34 1.35 S4

MLE 9.49 11.83 11.24 13.29 S4

STAN 7 7.66 7.11 7.36 S4

Table 2: Summary statistics of the computational times (in minutes) under scenarios S1-S4
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