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Statistics
• Statistics is the science/art of extracting information from data.


• It relies on replication/repetition (observing only one patient won’t do much).


• It also relies on variation (observing the same kind of patient over and over 
again will not help with the population at large).


• Learning from data is embedded in our survival instincts but sometimes we 
get it wrong if we rely only on instinct (see ideas from behavioural economics).


• Statisticians are also good at/obsessed with reducing the complexity of a 
problem and finding simpler solutions whenever possible (“Occam’s razor”).



Central idea
• Central to statistics is the idea of a 

probability distribution.


• It represents variation but also 
frequency.


• It tells us how diverse is the 
population of outcomes and how 
likely a given outcome is.


• Most importantly, entire 
distributions are characterized by 
only a few parameters (once we 
estimate those we know 
everything).



Reducing complexity
• Data in high dimension (imagine 20 

dimensions).


• Need to understand patterns, 
perhaps predict where a new 
observation comes in. 


• Hopeless, unless we introduce 
some structure. 


• If we assume that the data are 
multivariate Gaussian then all of a 
sudden we reduce an infinite 
dimensional problem to a finite 
manageable one. 



Motivating article

• The paper discusses criticisms of 
frequentist statistics.


• Presents the Bayesian paradigm 
and its advantages.


• Today I will discuss some of the 
above, using some examples.



What we want from data
• Sometimes we want to understand the generative model — the mechanism 

through which nature produces outcomes.


• We want to approximate the generative model using distributions and we 
estimate their corresponding parameters along with uncertainty 
quantifications (e.g.,confidence intervals).


• We want to test hypotheses (‘drug A is better than drug B’). 


• We want to predict the values of new outcomes (‘what will this patient look 
like in 1 month’).



Example: Pump failure data
• Pump failure data: number of 

failures in time t (in 1K hours)


• The model: 


•  with a std error of 0.025 


• We expect 2.14 failures in 10,000 
hours.

yi ∼ Poisson(λ × ti)
̂λ = 0.214

Pump Failures (y) Time (t)
1 5 94.32
2 1 15.72
3 5 62.88
4 14 125.76
5 3 5.24
6 19 31.44
7 1 1.05
8 1 1.05
9 4 2.10
10 22 10.48



Interpreting the uncertainty
• Theory tells us that if we were to repeat this experiment (infinitely) many times 

then 95% of times we will obtain  (estimate  2x std.err).


• This can allow managers to forecast the required stock of new pumps. 


• But we do not have an infinite population of nuclear plants!  


• Perhaps not all pumps are made by the same company so using the “same” for 
all of them is wrong


• Testing the null  yields the p-value  which is interpreted as 
“Assuming the null is true, the chance that we estimate  to be at least as far 
away from 1 as 0.214 is  ” — what a mouthful!


• Reject the null!

λ ∈ (0.164,0.264) ±

λ

H0 : λ = 1 10−16

λ
10−16



Common complaints against previous analysis
• Interpretability: confidence intervals 

and p-vals have awkward 
interpretations that lead to 
confusion and misuse.


• Replicability crisis in science.


• Ideally we want to be able to say 
“Probability the null is true is …”.


• Or “The probability that the interval 
(a,b) contains  is 95%”.


• Both of these are offered by the 
Bayesian approach!

λ



Bayesian approach
• Everything we have done up to now is frequentist statistics.


• Bayesian statistics is very different.


• Bayesians don't do confidence intervals and hypothesis tests.


• So what do they do? Bayesians treat parameters as random variables.


• To a Bayesian, probability is the only way to describe uncertainty.


• Things not known for certain - like values of parameters - must be described 
by a probability distribution.



From prior to posterior
• Suppose you are uncertain about something.  


• Then your uncertainty is described by a probability distribution called your 
prior distribution.


• Suppose you obtain some data relevant to that thing. The data changes your 
uncertainty, which is then described by a new probability distribution called 
your posterior distribution.


• The posterior distribution reflects the information both in the prior distribution 
and the data.


• Most of Bayesian inference is about how to go from prior to posterior.



Ingredients for Bayesian analysis
• The sampling distribution which describes the distribution of the data (this depends on 

parameters) - this one is used by frequentists too. 


• In the pump example 


• The prior distribution summarizes what we know a priori (i.e. before looking at the data 
about the parameter)


• In the pump example the prior is 


• Posterior distribution of  is 


f(yi | ti, λ) = Poisson(λ × ti)

p(λ) = Gamma(1,1)

λ

p(λ |y1, …, y10) =
p(λ)∏10

i=1 f(yi |λ)

p(y1, …, y10)
=

p(λ)∏10
i=1 f(yi |λ)

∫ p(λ)∏10
i=1 f(yi |λ)dλ
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Posterior distribution

• 


• Our knowledge about the parameter has changed 
substantially 


• If we had to summarize the entire posterior by one 
point we could choose the mean (which is almost the 
same as the mode)  


• The 95% credible interval is (0.168,0.265) very similar 
to the frequentist CI but with better interpretation.


• In this case the frequentist and Bayesian inferences are 
similar. This is not always the case.

p(λ |y1, …, y10) = Gamma(76, 352.14)

̂λ = 0.21
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What we didn’t discuss
•The choice of the model. For instance one could argue the pumps are different but similar:


• 


• 


• 


• Choice of priors: how does the prior influence the inference?


• How to choose between two models?


• How to judge whether a model fits well or not?


• How to predict (e.g., number of failures for a new pump)?


• How to test a hypothesis? (Short answer: Bayesian don’t really do it, they just compare the null 
hypothesis model that has, say ,  with the general one. 

f(yi |λi) = Poisson(λi × ti)

p(λi |α, β) = Gamma(α, β)

p(α) = p(β) = Uniform(0,100)

λ = 1



Parting thoughts

• If you need to do a statistical analysis, make sure that at least one statistician 
is being consulted (at least have them look at what you did)


• If you need to interpret a statistical analysis, you may need some help for 
complicated scenarios/models/analyses


• Here we scratched the surface, but we can go further once you identify some 
topics of interest


• If you want to see what I do:  https://raducraiu.com


• Questions?

https://raducraiu.com

