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Two themes

▶ Methods for modelling dependence patterns in the data so we can:
▶ Fuse different data streams (today)
▶ Extend the range of statistical models to capture complex generative

processes
▶ Improve inference (prediction, estimation, etc) (today)
▶ Modelling dependence is accompanied by computational challenges.

(today)
▶ Design of efficient computational algorithms for sampling or

optimization.
▶ Sampling is of paramount importance to Bayesian statisticians
▶ Optimization is important to everyone
▶ Introducing dependence in the design of sampling algorithms can

improve performance (today)
▶ Coming up with the ”right” dependence is challenging.
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Copulas for serially correlated data with hidden structures

Robert Zimmerman (Imperial College London)

Vianey Leos Barajas (Toronto)

Paper: Copula Modelling of Serially Correlated Multivariate Data with
Hidden Structures (JASA, 2024).
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Hidden Markov Models: An Example

▶ We observe a system in time, e.g. the evolution of several stocks,
the humidity and temperature in a room, the number of people late
for work in Toronto, etc.

▶ We believe that these measurements are informative about variables
that are not observed directly (they are hidden):
▶ Stocks −− > State of Economy
▶ Room H and T −− > State of occupancy
▶ People late −− > Traffic level
▶ The hidden variables are not constant, but they also change in time.
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Hidden Markov Models: Briefly put
▶ A hidden Markov model (HMM) pairs an observed time series

{Yt}t≥1 ⊆ Rd with a Markov chain {Xt}t≥1 on some state space X ,
such that the distribution of Ys | Xs is independent of Yt | Xt for
s ̸= t:

· · · Xt−2 Xt−1 Xt Xt+1 Xt+2 · · ·

Yt−2 Yt−1 Yt Yt+1 Yt+2

▶ Yt,h|{Xt = k} ∼ fk,h(·|λk,h) ∀h = 1, . . . , d
▶ {Xt} is a Markov process (finite state space X ) with initial

probability mass distribution {πi}i∈X and transition probabilities
{γi,j}i,j∈X
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Inferential aims for HMMs

▶ Typically, the chain {Xt}t≥1 is partially or completely unobserved.

▶ The hidden states can correspond to a precise variable (occupancy
data) or might be postulated (psychology, ecology, etc)

▶ Aim 1: Model the data generating mechanism Nasri et al. (2020)

▶ Aim 2: Decode (i.e., classify) or predict the Xt ’s from the observed
data.
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Fusion of Multiple Data Sources

▶ In real-world applications (sports, stock exchange, animal
movement, etc), various sensors capture multiple streams of data,
which are “fused” into a multivariate time series {Yt}t≥1

▶ In such situations, the components of any Yt = (Yt,1, . . . ,Yt,d)
cannot be assumed independent (even conditional on Xt)

▶ Instead, it is common to assume that Yt follows a multivariate
Gaussian distribution, but this places limits on marginals and
dependence structures

▶ What if the strength of dependence between the components of Yt
could be informative about the underlying state Xt?
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Occupancy Data
▶ The ability to detect whether a room is occupied using sensor data

(such as temperature and CO2 levels)

▶ Consider three publicly-available labelled datasets presented by
Candanedo and Feldheim (2016) which contain multivariate time
series of four environmental measurements (light, temperature,
humidity, CO2) and one derived metric (the humidity ratio), as well
as binary indicators for whether the room was occupied or not at the
time of measurement

Figure: Pseudo-observations computed from unoccupied (Panel 1) and
occupied (Panel 2) subsets.
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At the root of it all, a theorem

▶ Copulas are distribution functions on [0, 1]d that model dependence
between continuous random variables.

▶ Sklar’s Theorem: If Y1,Y2, . . .Yd are continuous r.v.’s with
distribution functions (df) F1, . . . ,Fd , there exists an unique copula
function C : [0, 1]d → [0, 1] such that

H(t1, . . . , td) = P(Y1 ≤ t1, . . . ,Yd ≤ td) = C(F1(t), . . . ,Fd(td)).

▶ The copula bridges the marginal distributions of Y1, . . . ,Yd with the
joint distribution. It corresponds to a distribution on [0, 1]d with
uniform margins.
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Copulas: The Joys

▶ Copulas are mathematical devices used to model dependence
between random variables regardless of their marginals.

▶ Copulas are useful for data fusion/integration as they lead to
coherent joint models, even when the marginals are in different
families or of different types.

▶ Copulas unlock information contained in the dependence part of the
distribution (second-order) that complements the information in the
marginals.

▶ Copulas extend statistical methods beyond the use of a multivariate
Gaussian or Student.
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Copulas Within HMMs

▶ Here we consider a HMM {(Yt ,Xt)}t≥1 ⊆ Rd × X in which the
state-dependent distributions use copulas:

Yt | (Xt = k) ∼ Hk(·) = Ck

(
Fk,1(· ;λk,1), . . . ,Fk,d(· ;λk,d)

∣∣∣ θk︸ ︷︷ ︸
depends on the hidden state value k

)
.

▶ Ck(·, . . . , · | θk) is a d-dimensional parametric copula

▶ {Xt}t≥1 is a Markov process on finite state space X = {1, 2, . . . ,K}
and K is known.

▶ In this model, all aspects of the state-dependent distributions are
allowed to vary between states
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Information in the dependence
▶ For a range of θ ∈ [0, 100), we simulated a bivariate time series of

length T = 100 from the 2-state HMM

Yt | (Xt = k) ∼ CFrank
(
N (0, 1),N (0, 1) | (−1)k · |θ|

)
, k = 1, 2

and then separately assessed the accuracy of a standard decoding
algorithm, first assuming independent margins and then the true
model:

Figure: Zero-one losses for independent margins (red dots) and true model
(blue dots)
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Estimation with missing data

▶ Data consist in observed Y1:T and missing X1:T

▶ Parameters are η = {λh,k}h=1:d
k=1:T

∪ {θk}k=1:T ∪ {γi,j}i=1:K
j=1:K

∪{πj}j=1:K .
▶ The complete-data log-likelihood for one trajectory of the copula

HMM is given by

ℓcom (η | y1:T ,X1:T ) = πX1 +
T∑

t=2
log γXt−1,Xt +

d∑
h=1

log fXt ,h(yt,h;λXt ,h)

+
T∑

t=1
log cXt (FXt ,1(yt,1;λXt ,1), . . . ,FXt ,1(yt,d ;λXt ,d) | θXt ) .

(1)
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Computation for HMMs Via the EM Algorithm

▶ Without copula, the estimation is done via the EM algorithm

▶ The E-Step is straightforward

▶ The maximization required by the M-Step is unstable or plain
unfeasible.

▶ The solution we found was to perform optimization in two steps:
▶ First optimize the parameters of the marginal distributions
▶ Second, optimize the parameters of the copulas after plugging in the

marginal estimates obtained in the previous step.

▶ However, this approach changes the nature of the algorithm which is
no longer ”EM-like” so a proof of its validity is required.
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Does This Work?

▶ For T ∈ {100, 1000, 5000} and d ∈ {2, 5, 10}, we simulated a
d-dimensional time series of length T from the 2-state HMM

Yt | (Xt = 1) ∼ CFrank
(
(N (µ1,h = −h, 1))d

h=1 | θ1 = 3
)

Yt | (Xt = 2) ∼ CClayton
(
(N (µ2,h = h, 1))d

h=1 | θ2 = 3
)

and estimated η = (µ1,1, . . . , µ2,d , θ1, θ2) using both approaches

▶ Applied to the basic EM algorithm, R’s optim with L-BFGS-B (i.e.,
quasi-Newton with box constraints) typically fails as soon as d ≥ 3
▶ The procedure is extremely sensitive to initial values and requires
η̂(0) ≈ η just to avoid overflow

▶ This kind of tuning is very tedious or impossible in high dimensions
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Does This Work?
▶ We keep track of the time (in seconds) until the algorithm

converges, and the L2 error of the resulting estimate, ϵ = ∥η − η̂∥2
▶ We used the lbfgsb3c package, which is more stable than optim

d = 2 d = 5 d = 10
T = 100 111.9 s, ϵ = 0.14 123.4 s, ϵ = 299.98 111.8 s, ϵ > 109

T = 1000 166.6 s, ϵ = 0.63 169.5 s, ϵ > 1011 418.23 s, ϵ = 725.06
T = 5000 ? ? ?

Table: EM Algorithm

d = 2 d = 5 d = 10
T = 100 5.1 s, ϵ = 0.29 3.0 s, ϵ = 0.94 4.2 s, ϵ = 0.58
T = 1000 34.4 s, ϵ = 0.57 22.9 s, ϵ = 0.60 34.4 s, ϵ = 0.80
T = 5000 172.6 s, ϵ = 0.13 106.2 s, ϵ = 0.12 168.7 s, ϵ = 0.19

Table: EFM Algorithm
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Numerical Experiment I

▶ Generative model:

Yi | (Xi = k) ∼ Ck (SN(·; ξk,1, ωk,1, αk,1),SN(·; ξk,2, ωk,2, αk,2) | τk) ,

for k ∈ {1, . . . , 4}.

State Copula family τk ξk,1 ωk,1 αk,1 ξk,2 ωk,2 αk,2

1 Clayton 0.2 -4 1 5 -1 1 -3
2 B4 0.4 -2 1 3 2 1 -3
3 Gaussian 0.6 0 1 5 3 1 -5
4 t(ν=5) 0.8 2 1 3 4 1 -5

Table: True parameters for the state-dependent distributions.
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Numerical Experiment I

T : 500 1000 2500 5000

Stopping Rule Tolerance:

0.01 14 24 23 15
0.001 17 26 25 17
0.0001 36 59 62 39
0.00001 230 115 460 269

Classifier: k-means 0.9020 0.9090 0.9200 0.9196
Local state decoding 0.9640 0.9640 0.9696 0.9732

Table: For each T ∈ {500, 1000, 2500, 5000}: (Top rows) Number of iterations taken by the EIFM
algorithm applied to Y1:T before stopping using L1-norm tolerances in
{0.01, 0.001, 0.0001, 0.00001}. (Bottom rows) Classification accuracy of initial k-means clustering
and local decoding with parameter estimates provided by the EIFM algorithm.
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Occupancy Data

Classifier Train Test 1
k-means clustering 0.865 0.818
Independence copulas within HMM 0.895 0.846
BB7/Tawn copulas within HMM 0.900 0.852

Table: Overall state classification accuracy for the training dataset and the test
dataset, using k-means clustering and local decoding via the HMM with
independent margins and the copula-within-HMM model.
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Living on the Edge: An Unified Approach to Antithetic
Sampling

Roberto Casarin (Ca’Foscari Venice)

Lorenzo Frattarolo (Verona)

Christian P. Robert (Paris and Warwick)

Paper: Living on the Edge: An Unified Approach to Antithetic Sampling
(Statistical Science, 2024).
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The Monte Carlo method

▶ The Monte Carlo method is at the core of model-based scientific
exploration.

▶ It relies on approximating an integral of interest I =
∫

f (x)π(x)dx
with Îd = 1

d
∑d

i=1 f (Xi) where
▶ π is a probability density,
▶ f : Rp 7→ R is a integrable function with respect to π
▶ d is the Monte Carlo sample size
▶ X1, . . . ,Xd are iid samples from π.
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The Antithetic Swindle

▶ Techniques needed to reduce the Monte Carlo sample size d , while
maintaining the desired precision in estimation, are essential.

▶ Variance reduction techniques use statistical properties induced by
the sampling design to reduce Var (̂Id)

▶ If the independence condition between samples X1, . . . ,Xd is
dropped then

Var (̂Id) = 1
d2

d∑
i=1

Var (f (Xi)) + 1
d2

∑
i ̸=j

Cov (f (Xi) , f (Xj)) .

▶ The antithetic swindle is executed when we are able to generate
X1, . . . ,Xd so that the average covariance

1
d2

∑
i ̸=j

Cov (f (Xi) , f (Xj))

is negative.
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Pairwise Construction

▶ The pairwise antithetic coupling introduced by Hammersley and
Morton (1956) relies on d/2 (assume for a moment d is even) iid
pairs of negatively correlated random variables (X1i ,X2i),
i = 1, . . . , d/2.

▶ This is achieved by sampling using the quantile coupling:

X1i ∼ π, X2i = F −1
π (1 − Fπ (X1i)) .

or
X1i = F −1

π (U), X2i = F −1
π (1 − U)

where U ∼ U(0, 1)
▶ This procedure minimizes the correlation for any monotonic f in the

case d = 2 and p = 1.
▶ However, the result doesn’t hold for d > 2.
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Beyond pairs: Latin Hypercube Sampling

▶ A popular procedure applicable to the general d ≥ 2, p ≥ 1 is the
Latin Hypercube sampling (McKay et al., 1979).

▶ Given a standard uniform d-dimensional random vector V and
Dσ = (σ (0) , . . . , σ (d − 1))T , a permutation of {0, 1, . . . , d − 1}
independent of U, set

U = 1
d (Dσ + V) . (2)

▶ d = 2 and Dσ = (0, 1):

U1 = V1
2 ∈

(
0, 1

2

)
, U2 = 1 + V2

2 ∈
(

1
2 , 1
)
.

▶ d = 3 and Dσ = (2, 0, 1):

U1 = 2 + V3
3 ∈

(
2
3 , 1
)
, U2 = V1

3 ∈
(

0, 1
3

)
, U3 = 1 + V2

3 ∈
(

1
3 ,

2
3

)
.
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Concordance Order

▶ Let X and Y be random vectors with CDFs F and G , respectively.
▶ Y is more concordant than X (written X ≺C Y) if

F (x) ≤ G(x), ∀x ∈ Rd .

▶ If X,Y ∈ Rd satisfy X ≺C Y then

Var
( d∑

h=1
bhf (Xh)

)
≤ Var

( d∑
h=1

bhf (Yh)
)
, ∀b ∈ Rd
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Countermonotonicity

▶ Consider a random vector U ∈ Rd with uniform marginals
▶ U is said to be d-countermonotonic (d-CTM), if there exists a

family {gh}1≤h≤d of strictly increasing continuous functions
[0, 1] 7→ R and some k ∈ R such that:

d∑
h=1

gh (Uh) = k a.s. (3)

▶ It has been shown that the set of d-CTM vectors is contained in the
subset of elements minimal in concordance order Lee et al. (2017)

▶ Bottom line: construct U ∈ Rd with uniform marginals such that∑d
l=1 gl (Ul) = const (often gl(ul) = ul)

▶ Note that the LH vector U is d-CTM iff V is d-CTM.
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Sampling on segments

▶ Sampling with equal probability on a collection S of line segments in
the d-dimensional Euclidean space.

▶ Since each segment is uniquely characterized by its endpoints or
vertexes, the collection S can be equivalently represented by the set
of vertex pairs that define the segments and their coordinates.

▶ This representation is efficient in large dimensions even when the
segments share some of their vertexes.
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Set up and notation

▶ Consider the vertex set V = {1, . . . , n} as a set of points in the
d-dimensional hypercube

▶ The coordinates of the k-th vertex form the column vector
xk ≡ (x1k , . . . , xdk)T ∈ [0, 1]d

▶ The coordinate matrix X = (x1, . . . , xn) as the collection of vertex
coordinates.

▶ There is an edge e = (i , j) between i and j , with i < j , if there is a
segment joining the two vertices i and j
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Illustration
x2

x1

1

1
x2

x1 x3

x4
α

α β γ

β

2

e∗ 1

1

4

e ∗6

3e∗
4

e ∗5

e∗2

e ∗3

Consider the collection of segments in the left plot with coordinate matrix

X =
(
α β γ α
β α β α

)
, (4)

where α < β ≤ γ ∈ R. The edge set is: E∗ = {e∗
1 = (1, 2) , e∗

2 = (1, 3) ,
e∗

3 = (1, 4) , e∗
4 = (2, 3) , e∗

5 = (2, 4) , e∗
6 = (3, 4)}
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Sampling on segments

▶ The collection of segments is defined by the edge set
E = {(i , j) ∈ V × V}.

▶ Then G = {V, E} is an undirected graph and S = {G,X} is the
collection of segments.

▶ The lexicographic order on vertex indexing induces an order on the
edge set

▶ The map φE : {1, . . . , |E|} 7→ E , k → (i (k) , j (k)) associates the
k-th element, ek ∈ E , to its couple of vertices.
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Sampling on segments

1. Draw V ∼ U [0, 1] and W ∼ U [0, 1] independently;
2. Use W to choose with uniform probability on the edge set E the

edge eK and obtain the random pair of vertices (I, J) =
(i (K ) , j (K )) with (i (K ) , j (K )) = φE(K );

3. Obtain a random point on the segment joining vertices I and J with
uniform probability

U1 = x1IV + (1 − V ) x1J ,

... (5)
Ud = xdIV + (1 − V ) xdJ .
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Edge living and d-CTM

▶ d-CTM leads to:

E

[ d∑
j=1

Uj

]
=

d∑
j=1

E [Uj ] = d
2 .

▶ The constant sum condition can be written as a linear restriction on
the coordinates of the vertices xk , that is

d∑
h=1

Uh =
d∑

h=1
xhJ + V

[ d∑
h=1

xhI −
d∑

h=1
xhJ

]
= d

2 ,

▶ This needs to be valid for all V and (I, J) so all vertices should be in
the hyperplane of constant sum, i.e.

d∑
h=1

xhk =
d∑

h=1

nl∑
m=1

ah,mIMh,m (k) = d
2 k = 1, . . . , n.
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Additional remarks

▶ Sampling on segments can be guaranteed to produce uniform
samples in the unit hypercube under certain verifiable assumptions
(about the segments).

▶ We recover many existing antithetic constructions.
▶ The joint distribution of (U1, . . . ,Ud) is a copula (remember them?).
▶ This is a new copula family with some unusual properties (under

study).
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Probit regression

▶ The data represent the clinical characteristics summarized by two
covariates of 55 patients, of which 19 were diagnosed with lupus.

▶ Yi ∼ Ber
(
Φ
(
xT

i β
))

where Φ is the standard normal CDF and
β = (β0, β1, β2)T is the vector of parameters.

▶ We introduce latent variables ψi ∼ N
(
xT

i β, 1
)

▶ The sampling algorithm iterates between these two steps:
▶ Sample β|ψ ∼ N

(
β̃,
(
X T X

)−1
)

with β̃ =
(
X T X

)−1 X Tψ with X
the data matrix whose i-th row is xi .

▶ ψi |β,Yi ∼ T N
(
xT

i β, 1,Yi
)

where T N
(
µ, σ2,Y

)
is a the normal

distribution with mean µ and variance σ2, truncated to be positive if
Y > 0 or negative otherwise.
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Probit regression
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Figure: Monte Carlo variance of the posterior mean estimator (vertical axis) for
different numbers of antithetic variates d (horizontal axis) In each plot: the
average variance of antithetic Gibbs (blue dots) and of iid Gibbs (yellow dots)
with their range (vertical segments). Note: all estimates are based on 100
independent experiments. In each experiment, the Gibbs sampler runs for 10
seconds.
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