
Chapter 14
Markov Switching Tensor Regressions

Roberto Casarin, Radu Craiu and Qing Wang

Abstract A new flexible tensor-on-tenor regression model that accounts for la-
tent regime changes is proposed. The coefficients are driven by a common hidden
Markov process that addresses structural breaks to enhance the model flexibility and
preserve parsimony. A new soft PARAFAC hierarchical prior is introduced to achieve
dimensionality reduction while preserving the structural information of the covari-
ate tensor. The proposed prior includes a new multi-way shrinking effect to address
over-parametrization issues while preserving interpretability and model tractabil-
ity. An efficient MCMC algorithm is introduced based on random scan Gibbs and
back-fitting strategy. The model framework’s effectiveness is illustrated using finan-
cial and commodity market volatility data. The proposed model exhibits superior
performance compared to the current benchmark, Lasso regression.

14.1 Introduction

As data grow in volume and complexity, it is increasingly common to record them
as high-dimensional arrays or tensors. Such structures appear in many applications
and fields, such as neuroimaging [8, 11], biostatistics, financial networks [2], or even
more generally, in time series [3]. People are often interested in characterizing the
relationship between a tensor predictor and a scalar outcome [8] or tensor outcome
[15]. Tensor regression has been studied extensively in a linear model framework.
Nevertheless, a common challenge within the framework of regression is model
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misspecification. One of the sources of model misspecification is the presence of
dynamic regimes, which naturally call for models with time-varying parameters.

In this paper, we assume a Hidden Markov chain dynamics for the regression
coefficients because it allows for model parsimony while preserving a high level of
flexibility compared to other time-varying parameter models. The model extends
the soft tensor linear regression of [8, 14, 15] to an HMM or MS framework to
accommodate structural breaks. In our multi-equation setting, the latent process is
common to several tensor regression equations involving different response variables
and, possibly, different sets of covariates. Using a common latent process facilitates
the integration of information about the latent process from multiple outcomes and
robustifies the estimation accounting for structural breaks. Regarding inference, we
consider a Bayesian inference procedure combined with an efficient Gibbs sampler,
which reduces computational costs and improves scalability [5].

14.2 A Markov-switching Tensor Regression Model

In our Markov Switching Tensor Regression Model (MSTR), we assume a system
of 𝑁 equations with time-varying parameters

y𝑡 = 𝝁(𝑠𝑡 ) + 𝑋𝑡 ×1:𝑀 𝑩(𝑠𝑡 ) + Σ1/2 (𝑠𝑡 )𝜺𝑡 , (14.1)

𝑡 = 1, . . . , 𝑇 , where ×𝑚:𝑛 denotes the tensor contract product along the modes from
𝑚 to 𝑛 [10], y𝑡 = (𝑦1𝑡 , . . . , 𝑦𝑁𝑡 )′ is the collection of response variables across
equations, 𝑋𝑡 is a 𝑝1 × . . . × 𝑝𝑀−1 covariate tensor, 𝑩(𝑠𝑡 ) = (𝐵1 (𝑠𝑡 ), . . . , 𝐵𝑁 (𝑠𝑡 ))
is a 𝑀-modes coefficient tensor of size 𝑝1 × . . . × 𝑝𝑀−1 × 𝑁 and 𝐵ℓ (𝑠𝑡 ) is a
𝑝1 × . . . × 𝑝𝑀−1 coefficient tensor, 𝝁(𝑠𝑡 ) = (𝜇1 (𝑠𝑡 ), . . . , 𝜇𝑁 (𝑠𝑡 ))′ an intercept
vector, Σ1/2 (𝑠𝑡 ) denotes the Cholesky’s decomposition of the positive definite 𝑁 ×𝑁
covariance matrix Σ(𝑠𝑡 ), 𝜺𝑡 ∼ N𝑁 (0, 𝐼𝑁 ), i.i.d. for 𝑡 = 1, . . . , 𝑇 .

The latent process {𝑠𝑡 , 𝑡 = 1, . . . , 𝑇} is a 𝐾-state homogeneous Markov chain
with transition probability P(𝑠𝑡 = 𝑗 |𝑠𝑡−1 = 𝑖) = 𝑝𝑖 𝑗 , 𝑖, 𝑗 = 1, . . . , 𝐾 and the tensor
regression parametrization used is

𝜇ℓ (𝑠𝑡 ) =
𝐾∑︁
𝑘=1

𝜇ℓ𝑘I(𝑠𝑡 = 𝑘), 𝐵ℓ (𝑠𝑡 ) =
𝐾∑︁
𝑘=1

𝐵ℓ𝑘I(𝑠𝑡 = 𝑘), Σ(𝑠𝑡 ) =
𝐾∑︁
𝑘=1

Σ𝑘I(𝑠𝑡 = 𝑘).

See [7] and [4] for alternative coefficient parameterisations.
Since, in many applications, the number of covariates in Eq. 14.1 is large, a di-

mensionality reduction strategy is needed. In this paper, we follow [14] and [2, 3]
and consider a low-rank representation combined with a hierarchical prior distribu-
tion. The hierarchical prior allows for shrinking effects in the coefficient matrices
𝐵ℓ𝑘 , 𝑘 = 1, . . . , 𝐾 , and the low-rank representation induces further shrinking effects
along different modes. To simplify exposition, we assume 𝑀 = 3, and the number
of elements in each mode is 𝑝1, 𝑝2 and 𝑁 . In our PARAFAC representation, the
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state-specific coefficient matrix is written as follows:

𝐵ℓ𝑘 =

𝐷∑︁
𝑑=1

𝐵
(𝑑)
ℓ,1,𝑘 ◦ 𝐵

(𝑑)
ℓ,2,𝑘 , (14.2)

where ◦ is the element-by-element Hadamard product and 𝐵
(𝑑)
ℓ,𝑚,𝑘

𝑚 = 1, 2 are
multiplicative factors as in [14]. The soft PARAFAC prior distribution includes three
stages. At the first stage, we assume an inverse gamma prior distributionIG(𝑎𝜎 , 𝑏𝜎)
for 𝜎2

ℓ,𝑘
and a matrix-variate normal distribution for the coefficient tensor:

𝐵
(𝑑)
ℓ,𝑚,𝑘

∼ MN 𝑝1 , 𝑝2

(
𝐺
(𝑑)
ℓ,𝑚,𝑘

, 𝜏ℓ,𝑘𝜅
2
ℓ,𝑚,𝑘𝜁

(𝑑)
ℓ,𝑘
𝐼𝑝1 , 𝐼𝑝2

)
, (14.3)

whereMN 𝑝1 , 𝑝2 (M,U,V) denotes the matrix-variate normal distribution with 𝑝1×
𝑝2 mean matrix M, 𝑝1× 𝑝1 row covariance matrix U and 𝑝2× 𝑝2 column covariance
matrix V. See [9]. The location matrix 𝐺 (𝑑)

ℓ,𝑚,𝑘
is parametrized as follows:

𝐺
(𝑑)
ℓ,𝑚,𝑘

=

{
𝜸 (𝑑)
ℓ,1,𝑘 ⊗ 𝜾𝑝2 , if 𝑚 = 1,

𝜾𝑝1 ⊗ 𝜸 (𝑑)
ℓ,2,𝑘 , if 𝑚 = 2,

where ⊗ denotes the outer product, 𝜾𝑛 = (1, . . . , 1)′ is the 𝑛-dimensional unit vector,
𝜸 (𝑑)
ℓ,1,𝑘 and 𝜸 (𝑑)

ℓ,2,𝑘 are the PARAFAC margins, which are vectors of sizes 𝑝1 and 𝑝2,
respectively. In the conditional mean of the factors 𝐵 (𝑑)

ℓ,𝑘
, we have

E
(
𝐵ℓ,𝑘 | 𝜸 (𝑑)ℓ,1,𝑘 , 𝜸

(𝑑)
ℓ,2,𝑘

)
=

𝐷∑︁
𝑑=1

E
(
𝐵
(𝑑)
ℓ,1,𝑘

)
◦ E

(
𝐵
(𝑑)
ℓ,2,𝑘

)
=

𝐷∑︁
𝑑=1

(
𝐺
(𝑑)
ℓ,1,𝑘 ◦ 𝐺

(𝑑)
ℓ,2,𝑘

)
=

𝐷∑︁
𝑑=1
(𝜸 (𝑑)
ℓ,1,𝑘 ◦ 𝜾𝑝1 ) ⊗ (𝜸

(𝑑)
ℓ,2,𝑘 ◦ 𝜾𝑝2 ) =

𝐷∑︁
𝑑=1

𝜸 (𝑑)
ℓ,1,𝑘 ⊗ 𝜸 (𝑑)

ℓ,2,𝑘 .

In the second stage, we assume that the margins from the PARAFAC decomposition
follow a multivariate normal distribution:

𝜸 (𝑑)
ℓ,𝑚,𝑘

∼ N𝑝𝑚 (0, 𝜏ℓ,𝑘𝜁
(𝑑)
ℓ,𝑘
𝑊
(𝑑)
ℓ,𝑚,𝑘
), (14.4)

and assume the distributions are centred around the null vector and have random
scales to allow for shrinkage at different levels. At the third stage, we borrow from
[13] and specify the priors for scale parameters to induce shrinkage across PARAFAC
components and fibers:

𝜏ℓ,𝑘 ∼ G𝑎(𝑎𝜏 , 𝑏𝜏), 𝜅2
ℓ,𝑚,𝑘 ∼ G𝑎(𝑎𝜅 , 𝑏𝜅 ), 𝑤

(𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

∼ E𝑥𝑝((𝜆 (𝑑)
ℓ,𝑚,𝑘
)2/2),

𝜆
(𝑑)
ℓ,𝑚,𝑘

∼ G𝑎(𝑎𝜆, 𝑏𝜆),
(
𝜁
(1)
ℓ,𝑘
, . . . , 𝜁

(𝐷)
ℓ,𝑘

)
∼ D𝑖𝑟 (𝛼/𝐷, . . . , 𝛼/𝐷),
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where G𝑎(𝑎, 𝑏), E𝑥𝑝(𝜆) and D𝑖𝑟 (𝜈1, . . . , 𝜈𝐷) denote the Gamma, Exponential
and Dirichlet distributions, respectively. Compared to [14] our prior assumes the
global scale 𝜏ℓ,𝑘 contributes not only to the variance of 𝜸 (𝑑)

ℓ,𝑚,𝑘
but also to that

of one of the tensor coefficients 𝐵 (𝑑)
ℓ,𝑚,𝑘

. This allows for stronger shrinkage ef-
fects and a full factorization of the prior variance, as detailed below. The matrices
𝑊
(𝑑)
ℓ,𝑚,𝑘

= diag(𝑤 (𝑑)
ℓ,1,1,𝑘 , . . . , 𝑤

(𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

, . . . , 𝑤
(𝑑)
ℓ,𝑀,𝑝𝑀 ,𝑘

), where 𝑗𝑚 = 1, . . . , 𝑝𝑚 de-
notes the 𝑗𝑚th element along mode𝑚, are the row-specific parameters that shrink the
individual elements of the margins. Together with the prior on 𝜆 (𝑑)

ℓ,𝑚,𝑘
, they lead to

an adaptive LASSO-type penalty on 𝜸 (𝑑)
ℓ,𝑚,𝑘

([1]). The parameter 𝜁 (𝑑)
ℓ,𝑘

is component-
specific and allows a subset of the 𝐷 components to contribute substantially to the
PARAFAC approximation while leaving the values of other components close to
zero. The transition probabilities (𝑝1𝑘 , . . . , 𝑝𝐾𝑘) are assumed to follow a Dirichlet
distribution:

(𝑝1𝑘 , . . . , 𝑝𝐾𝑘) ∼ D𝑖𝑟 (𝜈1, . . . , 𝜈𝐾 ). (14.5)

Dimensionality reduction is achieved by noticing that the number of equation- and
state-specific coefficients needed to be estimated reduces from 𝑝1× 𝑝2 to 𝐷 (𝑝1+ 𝑝2)
by applying a low-rank approximation. The choice of rank 𝐷 for the soft PARAFAC
decomposition of the tensor coefficient can lead to significant changes in computa-
tional costs, with a higher value of 𝐷 triggering drastic increases in computational
time. However, the increase in 𝐷 doesn’t necessarily guarantee a vast boost in in-
ferential performance. Intuitively, the soft PARAFAC can expand away from the
low-rank hard PARAFAC structure and achieve a higher-rank representation of the
tensor coefficient. See [5] for further discussion.

14.3 Posterior Approximation

In this section, we assume tensor-valued covariates and denote with 𝐵 (𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

the

𝑗𝑚th slice of tensor 𝐵 (𝑑)
ℓ,𝑚,𝑘

along the mode𝑚, where 𝑗𝑚 = (:, · · · , :, 𝑗𝑚, :, · · · , :) and
with 𝐵 (𝑑)

ℓ,𝑚, 𝑗𝑚 ,𝑘
the 𝑝1 × · · · × 𝑝𝑚−1 × 𝑝𝑚+1 × · · · × 𝑝𝑀 tensor with 𝑀 − 1 modes. In

the case of 𝑀 = 2, introduced in the previous section, 𝐵 (𝑑)
ℓ,𝑚,𝑘

is a matrix. The slice
𝐵
(𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

is the 𝑗1th row of 𝐵 (𝑑)
ℓ,𝑚,𝑘

when 𝑚 = 1 with 𝑗1 = ( 𝑗1, 𝑗), 𝑗 = 1, . . . , 𝑝2 or

the 𝑗2th column of 𝐵 (𝑑)
ℓ,𝑚,𝑘

when 𝑚 = 2 with 𝑗2 = (𝑖, 𝑗2), 𝑖 = 1, . . . , 𝑝1, respectively.
Thus, choosing 𝑗1 = 𝑖 and 𝑗2 = 𝑗 and the 𝑗 th and 𝑖th elements of 𝑗1 and 𝑗2,
respectively one get the coefficient 𝐵ℓ,𝑘,𝑖 𝑗 =

∑𝐷
𝑑=1 𝐵

(𝑑)
ℓ,1, (𝑖, 𝑗 ) ,𝑘𝐵

(𝑑)
ℓ,2, (𝑖, 𝑗 ) ,𝑘 . For ℓ =

1, . . . , 𝑁 , 𝑘 = 1, . . . , 𝐾 , 𝑚 = 1, . . . , 𝑀 , 𝑑 = 1, . . . , 𝐷 and 𝑗𝑚 = 1, . . . , 𝑝𝑚 define the
𝑞𝑚 ×1 vector 𝜷 (𝑑)

ℓ,𝑚, 𝑗𝑚 ,𝑘
= vec(𝐵 (𝑑)

ℓ,𝑚, 𝑗𝑚 ,𝑘
), with 𝑞𝑚 =

∏
𝑙≠𝑚 𝑝𝑙 , obtained by stacking

vertically all 1-mode fibers of the tensor following a lexicographic order of the
indexes. We further define the collections 𝜷𝑘 = (𝜷1𝑘 , . . . , 𝜷𝑁𝑘) and 𝜸𝑘 = (𝜸1𝑘 , . . . ,
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𝜸𝑁𝑘), with 𝜷ℓ,𝑘 = (𝜷 (1)
ℓ,1,1,𝑘 , . . . , 𝜷

(𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

, . . . , 𝜷 (𝐷)
ℓ,𝑀,𝑝𝑀 ,𝑘

)′ and 𝜸ℓ,𝑘 = (𝛾 (1)
ℓ,1,1,𝑘 ,

. . . , 𝛾
(𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

, . . . , 𝛾 (𝐷)
ℓ,𝑀,𝑝𝑀 ,𝑘

)′, where 𝛾 (𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

is the 𝑗𝑚th entry, 𝑗𝑚 = 1, . . . , 𝑝𝑚,

of the PARAFAC marginal vector 𝜸 (𝑑)
ℓ,𝑚,𝑘

defined in Sect. 14.2.

y𝑡−1 y𝑡 . . .y𝑡−2. . .

𝑠𝑡−1 𝑠𝑡 . . .𝑠𝑡−2. . .

p𝜈 𝜷 𝝈2𝝁𝜎𝜇

𝜸 𝜿2

w𝜻 𝝉

𝝀(𝑎𝜆, 𝑏𝜆 )

𝛼 (𝑎𝜏 , 𝑏𝜏 )

(𝑎𝜎 , 𝑏𝜎 )

(𝑎𝜅 , 𝑏𝜅 )

Fig. 14.1: Directed Acyclic Graph of the Bayesian Markov-switching Matrix Regres-
sion model. It exhibits the hierarchical structure of the observations y𝑡 (boxes), the
latent state variables 𝑠𝑡 (grey circles), the parameters 𝛽 (𝑑)

ℓ,𝑚, 𝑗𝑚 ,𝑘
, 𝜇ℓ,𝑘 , 𝑝𝑖𝑘 and 𝜎2

ℓ,𝑘
,

the hyper-parameters of the first stage 𝛾 (𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

and 𝜅2
ℓ,𝑚,𝑘

, the second stage 𝜏ℓ,𝑘 ,

𝜁
(𝑑)
ℓ,𝑚,𝑘

and 𝑤 (𝑑)
ℓ,𝑚, 𝑗𝑚 ,𝑘

and the third stage 𝜆 (𝑑)
ℓ,𝑚,𝑘

(white circles). The directed arrows
show the conditional independence structure of the model

We summarize our Bayesian model in the Directed Acyclic Graph (DAG) rep-
resentation of Fig. 14.1 where p = (p1, . . . , p𝐾 ) is the collection of transition
probabilities, 𝜷 = (𝜷1, . . . , 𝜷𝐾 ), 𝜸 = (𝜸1, . . . , 𝜸𝐾 ), 𝝈2 = (𝝈2

1 , . . . ,𝝈
2
𝐾
), and

𝝁 = (𝝁1, . . . , 𝝁𝐾 ) denote the collections across equations and states of the re-
gression coefficients, the PARFAC factors, the error scale parameters and inter-
cepts, respectively, where 𝝁𝑘 = (𝜇1,𝑘 , . . . , 𝜇𝑁,𝑘)′, 𝝈2

𝑘
= (𝜎2

1,𝑘 , . . . , 𝜎
2
𝑁,𝑘
)′ and

p𝑘 = (𝑝1𝑘 , . . . , 𝑝𝐾𝑘)′. See [5] for the derivation and further details on the sampling
methods.
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14.4 Empirical Application

To illustrate our MSTR model with 𝐾 = 3 regimes and rank 𝐷 = 2 (MSTR(3,2)
in the following), we study the relationship between the daily volatility index of the
US market, also known as VIX and the crude oil ETF oil volatility index (OVX)
with several other financial indicators. This is motivated by the fact that VIX has
been recognized as the key measure of the market’s expectations and sentiments,
and predicting VIX is crucial for developing investment strategies.

A vector of the log-VIX averages at different window sizes of {1, 5, 10, 22, 66}
days is usually employed to study the long-range dependence in VIX data [6]. This
choice mirrors daily, weekly, bi-weekly, monthly and quarterly components and
returns the family of heterogeneous autoregressive (HAR) processes. The model
specification is shown in (14.6) and (14.7).

VIX𝑡 = 𝜇1 (𝑠𝑡 ) +
〈
𝐵1 (𝑠𝑡 ),

©­­­­«
SP𝑡−1 . . . SP𝑡−ℎ . . . SP𝑡−44
ER𝑡−1 . . . ER𝑡−ℎ . . . ER𝑡−44
Oil𝑡−1 . . . Oil𝑡−ℎ . . . Oil𝑡−44

OVX𝑡−1 . . . OVX𝑡−ℎ . . . OVX𝑡−44

ª®®®®¬
〉
+ 𝜎1 (𝑠𝑡 )𝜖1𝑡 , (14.6)

OVX𝑡 = 𝜇2 (𝑠𝑡 ) +
〈
𝐵2 (𝑠𝑡 ),

©­­­­«
SP𝑡−1 . . . SP𝑡−ℎ . . . SP𝑡−44
ER𝑡−1 . . . ER𝑡−ℎ . . . ER𝑡−44
Oil𝑡−1 . . . Oil𝑡−ℎ . . . Oil𝑡−44
VIX𝑡−1 . . . VIX𝑡−ℎ . . . VIX𝑡−44

ª®®®®¬
〉
+ 𝜎2 (𝑠𝑡 )𝜖2𝑡 . (14.7)

Left plots in Fig. 14.2 show that the MSTR(3,2) in-sample fitting is better than the
one of the ordinary least squares and linear LASSO. The stepwise lines in the right
plots show that by taking advantage of the Hidden Markov process, the MSTR(3, 2)
model detects three oil volatility regimes: low volatility (regime 1), moderately high
volatility (regime 2) and high volatility (regime 3). The regime identification follows
from the prior identifying restriction 𝜇11 < 𝜇12 < 𝜇13.

Fig. 14.3 provides the coefficient estimates of the Markov-switching Tensor Re-
gression model MSTR(3, 2). In each plot the pairs of coefficients (𝐵ℓ (1), 𝐵ℓ (2))
and (𝐵ℓ (1), 𝐵ℓ (3)) are depicted (dots) for the VIX equation (ℓ = 1, left plots) and
OVX equation (ℓ = 2, right plots).

The regime separation can be further described by inspecting the estimated effects
of ℎ-day log-return of oil prices (Oil𝑡−ℎ, ℎ = 1, . . . , 44) and S&P 500 (SP𝑡−ℎ
ℎ = 1, . . . , 44) on VIX (blue dots, left) and OVX (red dots, right). The dots in the
plots correspond to the values of parameters in different pairs of volatility regimes.
The 70% HPD regions (grey ellipses) provide evidence of coefficient heterogeneity
across regimes (asymmetric effects), equations (market asymmetry) and lags (long-
term effects). The asymmetric effects in the coefficients are more substantial across
regime 1 and 3 than regime 1 and 2. Moreover, there is evidence of a more balanced
impact of the ℎ-day S&P 500 log-returns on both markets (VIX and OVX) compared
to the impacts of oil prices. There is also evidence of non-negligible long-term effects
of oil prices on the stock market (dark blue dots in the left-bottom plot of Panel a).
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Fig. 14.2: In-sample fitting versus the actual data. Left: Least Squares (orange dashed) and
LASSO (blue dashed) fitting. Right: Markov-Switching Tensor Regression model MSTR(3, 2)
fitting (orange dashed) and estimated hidden states (red solid). For all plots, the green solid line
represents the actual data for the VIX and VOX.

14.5 Conclusion

This paper proposes a Markov Switching Tensor-on-Tensor Regression Model
(MSTR) for high dimensional data where a common hidden Markov chain pro-
cess drives dependencies between equations and allows for regime changes and
time-varying coefficients. A low-rank representation of the tensor coefficient is used
to achieve dimensionality reduction. A hierarchical prior distribution introduces fur-
ther shrinkage effects in the regression coefficients. An efficient MCMC sampler
based on Random Partial Scan Gibbs and a back-fitting strategy is introduced. We
illustrate our MSTR with a real-world application to oil and stock market volatility
data. Our Bayesian MSTR model outperforms competing models and can capture
structural changes in the parameters by identifying distinct volatility regimes. The
MSTR can also capture the heterogeneity and asymmetric effects in the coefficient
across the equations.
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(a) Effects of Oil𝑡−ℎ

(b) Effects of SP𝑡−ℎ

Fig. 14.3: Markov-switching Tensor Regression model MSTR(3, 2) coefficient es-
timates. Effects of ℎ-day Oil (panel a) and S&P 500 (panel b) log-returns on VIX
(left column) and OVX (right column) for ℎ ∈ {1, . . . , 44}. In each plot, lighter and
darker colours represent smaller and larger ℎ, respectively, and grey ellipses exhibit
significant asymmetric effects across regimes (70% Highest Posterior Density re-
gions).
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