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Overview of Latent Variable Models

▶ Latent Variable Models (LVMs) were driven by the need to model
unobserved variables/putative constructs.

▶ Applications span psychology, sociology, economics, medicine, and
machine learning.

▶ Key motivations include:
▶ Measuring unobservable traits
▶ Dealing with heterogeneity
▶ Reducing dimensionality
▶ Modeling dependence structure
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Psychology and Educational Testing

▶ Motivation: Measure intelligence, personality, attitudes.
▶ Latent Trait Models: Spearman’s g-factor, IRT models.

▶ Spearman (1904): Proposed the “g-factor” (general intelligence) as
a latent cause of test performance.

▶ Thurstone (1935): Introduced multiple factor models for mental
abilities.

▶ Hotelling (1933): Principal Component Analysis (PCA) – not latent
but foundational for dimensionality reduction.
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Sociology and Marketing

▶ Motivation: Identify hidden subpopulations or belief systems.
▶ Latent Class Analysis (LCA):

▶ Cluster categorical responses into latent groups.
▶ Anderson and Rubin (1956): Inference in factor analysis;

identifiability and estimation.
▶ Lazarsfeld and Henry (1968): Latent Class Analysis (LCA) for

categorical data.
▶ Latent Mixture Models:

▶ Segment markets based on purchasing behavior.
▶ Explain variation in consumer preferences.
▶ Dempster et al. (1977): EM algorithm for latent data problems.

▶ The EM and Data Augmentation (DA, aka ”Bayesian EM”)
algorithms exemplify the tight connection between LVM and efficient
computation.
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Machine Learning and Artificial Intelligence

▶ Motivation: Learn low-dimensional structure in high-dimensional
data.
▶ Tipping & Bishop (1999): Probabilistic PCA.

▶ Topic Modeling:
▶ Latent topics explain word distributions in documents.

▶ Blei et al. (2003): Latent Dirichlet Allocation (LDA).

▶ Autoencoders and VAEs:
▶ Learn latent representations for generative modeling.
▶ Kingma and Welling (2014): Variational Autoencoders (VAEs).
▶ Mbacke, Clerc and Germain (2023): Statistical guarantees for

VAEs via PAC Bayes.
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Which LVM is used in this talk?

▶ The variable of interest W is sometimes impossible to measure
directly (State of the economy, Traffic in a city, State of your health,
State of a complex disease: Xu et al. (2016) )

▶ Instead, one measures
▶ Y = (Y1, . . . , Yk)T whose components are surrogates of W and each

provide partial information about W
▶ In addition, we measure also a covariate vector X ∈ Rp

▶ We are often interested in the explanatory power of X for W .
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Copulas: The Joys

▶ Copulas are mathematical devices used to model dependence
between random variables regardless of their marginals.

▶ Copulas are useful for data fusion/integration because they lead to
coherent joint models, even when the marginals are in different
families (e.g., Gaussian, Poisson, Student, etc) or of different types
(e.g, discrete, continuous).

▶ Copulas unlock information contained in the dependence part of the
distribution (second-order) that complements the information in the
marginals.

▶ Simply put, copulas allow us to extend statistical methods beyond
the use of a multivariate Gaussian or Student.
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At the root of it all, a theorem

▶ If Y1, Y2, . . . , YK are continuous r.v.’s with cdfs F1, F2, . . . , Fk , there
is an unique copula C : [0, 1]K → [0, 1] that links the joint cdf with
the marginal ones (Sklar’s Theorem).

▶ The copula (when K = 2) C : [0, 1] × [0, 1] → [0, 1] satisfies

F12(t, s) = Pr(Y1 ≤ t, Y2 ≤ s) = C(F1(t), F2(s)).

▶ The conditional copula satisfies

F12|X (t, s) = Pr(Y1 ≤ t, Y2 ≤ s|X ) = C(F1|X (t), F2|X (s)|X )
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At the root of it all, a theorem

▶ Usually we use parametric families so C(u, v) = Cθ(u, v) such as
Clayton’s family: Cθ(u, v) =

[
max

(
u−θ + v−θ − 1, 0

)]−1/θ.
Frank’s family: Kθ(u, v) = − 1

θ ln
[
1 + (e−θu−1)(e−θv −1)

e−θ−1

]
.

▶ In a conditional copula, θ may depend on X .
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An example

▶ Cardiotocography (CTG) is a medical procedure that monitors the
fetal heart rate.

▶ The LV is the fetus’ underlying state of health during birth, W .

▶ Our surrogate response is the bivariate vector (Q, Y ) where
▶ Q is the number of peaks (acceleration followed by a deceleration of

heart beats) for the signal recorded by the CTG
▶ Y is the log of mean short-term ”beat-to-beat” variability (MSTV)

where the short-term variability (STV) is obtained by measuring the
time between successive R waves (cardiac systoles) of the fetus’
electrocardiogram.

▶ The covariates are FM (fetal movement) and UC (uterine
contraction), two continuous variables monitored during birth.
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Conditional independence LV model

▶ A canonical LV model, given Wi = Xiβ + ϵ, is

Yi ⊥ Qi |Wi

Yi ∼ N(µc + λcWi , σ2)
Qi ∼ Poisson(exp (µd + λdWi))

▶ This implies that the two marginal regressions share a common
random effect so they are marginally dependent (and conditionally
independent)

▶ The induced dependence is not analytically available.
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Conditional independence is a Copula LV

▶ The copula alternative is, conditional on Wi ,

H(Yi , Qi |Wi) = Cθi (FY (Yi |Wi), FQ(Qi |Wi)), θi = κ−1(ξ0 + ξ1Wi)
Yi ∼ N(µc + λcWi , σ2); Qi ∼ Poisson(exp (µd + λdWi))

▶ The whole joint distribution of (Y , Q) is varying with W not just
the marginals.

▶ The copula captures the residual dependence on W after the
marginal effects have been accounted for.

▶ The previous model is obtained when the copula is the independence
copula.

▶ When marginalizing over W we end up with a conditional copula
model in which both marginals and the dependence structure vary
with the covariates.
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Why the Conditional Copula?
▶ Yi |x ∼ N(fi(x), σi) x ∈ R2

▶ True marginal means:
▶ f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
▶ f2(x) = 0.6 sin(3x1 + 5x2)
▶ σ1 = σ2 = 0.2, X1 ⊥ X2.

▶ Copula: θ(x) = 0.71

▶ Suppose x2 is not observed so inference is based only on x1
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CTG: The LV Copula Model
▶ (Qi , Yi)|Wi has joint density

f(Q,Y )(q, y) = fc(y) ·
[
Cd|c (Fd(q), Fc(y)) − Cd|c (Fd(q−), Fc(y))

]
,

where
Cd|c(ud , uc) = ∂

∂uc
C(ud , uc).

▶ Data Augmentation: Introduce latent variable Z such that

Q d= F −
d (FZ (Z )),

▶ The copula between (Y , Z ) is the same as the copula between
(Y , Q)

▶ We can choose the distribution of Z to help the computation.
▶ For instance if we use a Gaussian copula, it helps to have

Z ∼ N(0, 1)
▶ Craiu and Sabeti (2012); Smith and Khaled (2012).
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CTG: The Augmented LV Copula Model

▶ The dependence between Y , Z and Q is defined by their joint
conditional distribution

f(Q,Z ,Y )|W (q, z , y | w) = h(z , y | w , µc , λc ,ψc , ξ)
· 1F −1

Z (Fd (q−|φd (µd ,λd ,w)))≤z<F −1
Z (Fd (q|φd (µd ,λd ,w))).

▶ Let ξ = (ξ0, ξ1) ∈ R2 and A(w) = ξ0 + ξ1 · w . Then we set

θ(w , ξ) = eA(w) − e−A(w)

eA(w) − e−A(w)

as the correlation parameter of the bivariate Gaussian conditional
copula of (Y , Z )|W = w .

▶ Parameters are a priori independent
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Some MCMC details

▶ If the copula and marginals are Gaussian the joint is a multivariate
normal so some of the conditional densities are available in closed
form.

▶ For other copula families we rely on MwG moves.

▶ We sample {Zi : 1 ≤ i ≤ n} from its conditional distribution and
use the samples only to update the copula parameters ξ.

▶ To update the remaining parameters, we condition on the observed
data.

▶ Adaptive strategy for all MwG: target an acceptance rate of 44%.
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Model Selection: WAIC

▶ The WAIC is defined as

WAIC(M) = −2fit(M) + 2p(M), (1)

where the model fitness is

fit(M) =
n∑

i=1
log (E [Pr(yi , qi |ω, M)]) (2)

and the penalty

p(M) =
n∑

i=1
Var ( log (Pr(yi , qi |ω, M))) , (3)

where ω contains all the parameters and latent variables in the
model.
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Spotlight on dependence: A conditional WAIC

▶ We use the following two conditional WAICs (Levi and Craiu, 2018)

CWAICY |Q(M) = − 2
n∑

i=1

log (E [Pr(yi |qi , ω, M)]) +

+ 2
n∑

i=1

Var ( log (Pr(yi |qi , ω, M))) ,

CWAICQ|Y (M) = − 2
n∑

i=1

log (E [Pr(qi |yi , ω, M)]) +

+ 2
n∑

i=1

Var ( log (Pr(qi |yi , ω, M))) ,
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Spotlight on dependence: A conditional WAIC

▶ One can show (Levi and Craiu, 2018) CWAICY |Q is asymptotically
equivalent to CCV for the marginal likelihood

CCVY |Q(M) =
n∑

i=1
log (Pr(yi |qi , D−i , M)) .

▶ Similarly, CWAICQ|Y is asymptotically equivalent to

CCVQ|Y (M) =
n∑

i=1
log (Pr(qi |yi , D−i , M)) .
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Simulation Experiment

▶ Generate data using a Gaussian copula

0

5

10

15

-5.0 -2.5 0.0 2.5 5.0

y

q

-1.0
-0.5
0.0
0.5
1.0

Kendall's tau

Gaussian copula

Figure: Bivariate scatterplot of the generated data with Gaussian copula,
and Poisson and normal marginals
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Simulation Experiment

▶ CWAICY |Q and CWAICQ|Y selection criteria

Criteria\Copula Gaussian Frank Gumbel Clayton Indep
CWAICY |Q 1627.36 1642.36 2395.17 1637.17 1606.31
CWAICQ|Y 950.71 982.42 1673.57 976.05 997.43

Average 1289.04 1312.39 2034.37 1306.61 1301.87
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Simulation Experiment
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Figure: Traceplots for η’s components.
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Simulation Experiment
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CTG: The data
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CTG: Estimates

▶ WAIC , WAICY |Q and WAICQ|Y all point to the Gaussian copula
(over Gumbel, Frank, Clayton, Independence).

▶ The posterior means

β1 (FM) β2 (UC) λd λc ξ1

Mean 0.1744 0.3147 0.5101 0.6038 -2.3401
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CTG: What does it mean?

▶ A peak in the histogram (counted with Nmax) would typically be
produced by an FHR acceleration followed by a deceleration.

▶ Certain decelerations can be attributed to compression of the baby’s
head during uterine contractions, so they’re not unusual.

▶ Late decelerations (starting after a uterine contraction begins) and
especially variable decelerations often suggest a compromise in the
supply of blood and oxygen to the fetus.

▶ A reduced STV can signify a quiet or sleep phase of the fetus, but
also the effects of analgesic drugs given to the mother, fetal hypoxia,
prematurity, neurological damage and tachycardia from any cause.

▶ Interpretation: Extremes values of W are identified with ”unhealthy”
regimes while small values of |W | correspond to healthy ones.

▶ It is physiologically plausible that MSTV should be negatively
correlated with Nmax.
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