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Copulas for serially correlated data with hidden structures

This project was done in collaboration with

Robert Zimmerman (Imperial College London)

Vianey Leos Barajas (Toronto)

Paper: Copula Modelling of Serially Correlated Multivariate Data with
Hidden Structures (JASA, 2024).
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Hidden Markov Models: Briefly put

» A hidden Markov model (HMM) pairs an observed time series
{Y:}+>1 € RY with a Markov chain {X;};>1 on some state space X,
such that the distribution of Y, | X, is independent of Y, | X; for

s # t

ONOBORONO

» Y n{Xe =k} ~ fun(-|Akp) YVh=1,...,d

» {X;} is a Markov process (finite state space X’) with initial
probability mass distribution {7;};cx and transition probabilities
{vijhijex
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Inferential aims for HMMs

» Typically, the chain {X;};>1 is partially or completely unobserved.

» The hidden states can correspond to a precise variable (occupancy
data) or might be postulated (psychology, ecology, etc)

» Aim 1: Model the data generating mechanism Nasri et al. (2020)

» Aim 2: Decode (i.e., classify) or predict the X;'s from the observed
data.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 4
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Fusion of Multiple Data Sources

» In real-world applications (sports, stock exchange, animal
movement, etc), various sensors capture multiple streams of data,
which are “fused” into a multivariate time series {Y;}:>1

» In such situations, the components of any Y¢ = (Y:1,..., Yid)
cannot be assumed independent (even conditional on X;)

» The corresponding assumption for HMMs — that of contemporaneous
conditional independence Zucchini et al. (2017) — is often violated

» Instead, it is common to assume that Y, follows a multivariate
Gaussian distribution, but this places limits on marginals and
dependence structures

» What if the strength of dependence between the components of Y,
could be informative about the underlying state X;?

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 5
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Occupancy Data

» The ability to detect whether a room is occupied using sensor data
(such as temperature and CO; levels)

» Consider three publicly-available labelled datasets presented by
Candanedo and Feldheim (2016) which contain multivariate time
series of four environmental measurements (Iight, temperature,
humidity, CO,) and one derived metric (the humidity ratio), as well
as binary indicators for whether the room was occupied or not at the
time of measurement

HumidityR

Figure: Pseudo-observations computed from unoccupied (Panel 1) and
occupied (Panel 2) subsets.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 6



Serially correlated data with hidden structures Latent Variable Models References
00000@000000000000000 000000000000000

Copulas: The Joys

» Copulas are mathematical devices used to model dependence
between random variables regardless of their marginals.

» Copulas are useful for data fusion/integration as they lead to
coherent joint models, even when the marginals are in different
families or of different types.

» Copulas unlock information contained in the dependence part of the
distribution (second-order) that complements the information in the
marginals.

» Copulas extend statistical methods beyond the use of a multivariate
Gaussian or Student.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 7
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At the root of it all, a theorem

» Copulas are distribution functions on [0, 1] that model dependence
between continuous random variables.

» Sklar's Theorem: If Y1, Ya,... Yy are continuous r.v.'s with
distribution functions (df) Fq,..., Fy, there exists an unique copula
function C : [0,1]9 — [0, 1] such that

H(ti, ..., ta) =P(Y1 < t1,..., Yg < tg) = C(Fi(t), ..., Fa(ta)).
» The copula bridges the marginal distributions of Yi,..., Yy with the
joint distribution. It corresponds to a distribution on [0, 1]¢ with
uniform margins.
» This can be extended to conditional distributions and copulas:

]P)(Yl <ty,...,Yq < td|X) = C(Fl(t|X),7Fd(td|X)|X)

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 8
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Copulas Within HMMs

» Here we consider a HMM {(Y¢, X;)}+>1 € R? x X in which the
state-dependent distributions use copulas:

Y. | (Xe = k) ~ He()) = Gk (Fk,l(' i A1), s Fiod(c i Akd) ‘ Gk)-

depends on the hidden state value k
» Ci(-..., | 0k) is a d-dimensional parametric copula

» {X:}+>1 is a Markov process on finite state space X = {1,2,...,K}
and K is known.

» In this model, all aspects of the state-dependent distributions are
allowed to vary between states

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 9
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Information in the dependence

» For a range of 6 € [0,100), we simulated a bivariate time series of
length T = 100 from the 2-state HMM

Ye | (Xe = k) ~ Crrank (NM(0,1),MV(0,1) | (=1)K-10]), k=1,2

and then separately assessed the accuracy of a standard decoding
algorithm, first assuming independent margins and then the true
model:

Zero-One Loss

Figure: Zero-one losses for independent margins (red dots) and true model
(blue dots)

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 10
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Estimation with missing data

» Data consist in observed Y.+ and missing Xi.1
» Parameters are n = {/\h’k}f:il:dr U {0k k=17 U {7ij}i
=1: J
U{mj}j=1:k-
» The complete-data log-likelihood for one trajectory of the copula
HMM is given by

=1:K
=1:K

T d
leom (M | Y17, X1:7) = X, + Z log vx,_,,x, + Z log fx.,n(Ye.h: Ax,.n)
t=2 h—1
.
+ Z log cx, (Fx,,1(Ye,1: Ax.1)s - -+ Fx 1(Ve,di Ax,d) | Ox,) -
=1

(1)

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 11
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Computation for HMMs Via the EM Algorithm

» Without copula, the estimation is done via the EM algorithm (aka
Baum-Welch)

» The complete-data log-likelihood is written in terms of the state
membership indicators Uy : = Ix,—k and Vj x: = Lx,_,—j x,=«k

» In the E-Step, these indicators are estimated by the conditional
probabilities & s =P (X = k | Yi.7 = y1.7) and
Uikt =P (Xee1 = j, Xe = k | Yi.7 = y1.7), which are computed
based on current parameter estimates

» This only requires evaluating the state-dependent densities at each
of the observations yy,...,y7 (thisis “OK")

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 12
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The M-Step Is Hard

» In the M-Step, the resulting complete-data log-likelihood is
maximized with respect to all parameters in the model
simultaneously

» Only for the simplest univariate models do the state-dependent
MLEs exist in closed form; otherwise, one must resort to numerical
methods (this is hard and unstable!)

» Evaluating a copula density c(+, ..., | 6«) in high dimensions is slow

» When the state-dependent distributions in an HMM are copulas,
performing the M-Step directly requires the evaluation of

K T
argmax Z Z byt | log Ck( Fii(yen Ae)s - Frd(Ve,di Akd) ‘ 9k)
{0} {0 n} k=1 =1

d

+ Y log fie n(e.hi Aen)
h=1

» This is very unstable (and slow)

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 13
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Inference Functions for Margins

> Likelihood-based inference for copulas is easier when the goal is to
estimate 6 alone in the presence of known margins

» Why not perform inference on the marginal distributions first, and
then on the copula itself?

» In the context of iid data, this is exactly the inference functions for
margins (IFM) approach of Joe and Xu (1996):
> First estimate each A, by its “marginal MLE" A, given {Y:.s}i>1, for
he{l,...,d} . .
» Then estimate 0 assuming fixed marginals Fi(-; A1),..., Fa(:; Ag)

» One can show that the IFM estimator is consistent and

asymptotically normal (although relatively less efficient than the
MLE)

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 14
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New problems

» The EIFM algorithm is not an GEM algorithm

-

M‘{

does not imply

M~

e - log <C(F1(yt,1; A, Falyeai D) ‘ 9(5)>)

t=1

-

< Z b - log (C(Fl(}’z,l; )\gsﬂ)), o Fa(Ye: )\(s+1)) ‘ 9(5))) .
t=1

» The EIFM algorithm will converge (to a local or global maximum).

» The estimator is consistent and asymptotically normal (under mild regularity
conditions).

» EIFM as a version of the ES algorithm of Elashoff and Ryan (2004).
» Use asymptotic theory of M-estimators for HMMs Jensen (2011).

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 15
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Does This Work?

» For T € {100,1000,5000} and d € {2,5,10}, we simulated a
d-dimensional time series of length T from the 2-state HMM
Yt ‘ (Xt - ]-) ~ CFrank ((N(Ml,h - _h7 1))%:1 | 91 - 3)

Y | (Xe =2) ~ Cciayton (N (pi2,n = h, D), |6, = 3)

and estimated 17 = (1,1, - - -, 42,4, 01, 02) using both approaches

» Applied to the basic EM algorithm, R’'s optim with L-BFGS-B (i.e.,
quasi-Newton with box constraints) typically fails as soon as d > 3
» The procedure is extremely sensitive to initial values and requires
A© ~ 7 just to avoid overflow
» This kind of tuning is very tedious or impossible in high dimensions

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 16
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Does This Work?
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» We keep track of the time (in seconds) until the algorithm
converges, and the [, error of the resulting estimate, € = || — 7|,
» We used the 1bfgsb3c package, which is more stable than optim

d=2 d=5 d=10
T =100 || 11195, ¢ =0.14 | 1234 s, ¢ = 299.98 111.8's, ¢ > 107
T =1000 || 166.6s, ¢ = 0.63 1695 s, ¢ > 10 418.23 s, ¢ = 725.06
T = 5000 7 7 ?
Table: EM Algorithm
d=2 d=5 d=10
T =100 51s,¢=10.29 3.0s, ¢=0.94 42s, ¢ =058
T = 1000 344s, ¢ = 0.57 229s, ¢ = 0.60 3445, ¢ —=0.80
T =5000 || 1726 s, ¢ =0.13 | 106.2s, ¢ = 0.12 | 168.7 s, ¢ = 0.19
Table: EFM Algorithm
Radu Craiu Statistical Elucidation of Latent Structures via Copulas 17
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Numerical Experiment |

» Generative model:
Yi| (Xi=k)~ G (SN(; €1, wie,1, 1), SN €k 2, Wi 2, Qe 2) | Ti)

for k € {1,...,4}.

State ‘ Copula family ‘ Tk ‘ k1 Wk1  Qka ‘ ko Wk2 Qk2
1 Clayton 02| -4 1 5 -1 1 -3
2 B4 0.4 -2 1 3 2 1 -3
3 Gaussian 0.6 0 1 5 3 1 -5
4|ty 08| 2 1 3|4 1 5

Table: True parameters for the state-dependent distributions.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 18



Serially correlated data with hidden structures Latent Variable Models References
000000000000000008000 000000000000000

Numerical Experiment |

T: 500 1000 2500 5000
0.01 14 24 23 15

Stopping Rule Tolerance: 0.001 17 26 25 17
pping Ru " 0.0001 36 59 62 39
0.00001 230 115 460 269

k-means 0.0020 0.9090 0.9200 0.9196

Classifier: Local state decoding | 0.9640 0.9640 0.9696 0.9732

Table: For each T € {500, 1000,2500,5000}: (Top rows) Number of iterations taken by the EIFM
algorithm applied to Yi.7 before stopping using Li-norm tolerances in
{0.01,0.001, 0.0001, 0.00001}. (Bottom rows) Classification accuracy of initial k-means clustering
and local decoding with parameter estimates provided by the EIFM algorithm.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 19
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» Several families of parametric copulas were tried

Family ‘ AIC (State 1)

AIC (State 2)

Gauss

t

Clayton
Gumbel

Frank

Joe

Galambos
Hdusler-Reiss
BB1

BB6

BB7

BB8

Tawn (type 1)
Tawn (type 2)

-370.786
-437.542
-474.836
-484.252
-273.613
-490.103
-295.549
-282.452
-497.013
-495.401
-518.923
-490.223
-411.847
-422.268

-59.281
-71.291
-66.087
-72.437
-66.497
-64.995
-71.031
-61.547
-70.509
-70.435
-68.207
-66.738
-76.976
-55.382

Table: AICs for unoccupied (state 1) and occupied (state 2) classifications

of the occupancy data.

Radu Craiu
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Occupancy Data

Classifier Train  Test 1

k-means clustering 0.865 0.818
Independence copulas within HMM | 0.895  0.846
BB7/Tawn copulas within HMM 0.900 0.852

Table: Overall state classification accuracy for the training dataset and the test
dataset, using k-means clustering and local decoding via the HMM with
independent margins and the copula-within-HMM model.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 21
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Latent Variable Models with Copulas

This project is currently developed in collaboration with

Robert Zimmerman (Imperial College London)

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 22



Serially correlated data with hidden structures Latent Variable Models References
000000000000000000000 @00000000000000

Latent Variables (LV)

» The variable of interest W is sometimes impossible to measure
directly
» State of the economy
» Traffic in a city
» State of your health
» State of a complex disease

» |nstead, one measures

> Y=(Y,..., Yk)T whose components are surrogates of W and each
provide partial information about W
» Covariate X € R?

» We are often interested in the explanatory power of X for W.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 23
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An example

» Cardiotocography (CTG) is a medical procedure that monitors the
fetal heart rate.

» The LV is the fetus’ underlying state of health during birth, W.

» Our surrogate response is the bivariate vector (Q, Y') where
> Q is the number of peaks (acceleration followed by a deceleration of
heart beats) for the signal recorded by the CTG
» Y is the log of mean short-term "beat-to-beat” variability (MSTV)
where the short-term variability (STV) is obtained by measuring the
time between successive R waves (cardiac systoles) of the fetus’
electrocardiogram.

» The covariates are FM (fetal movement) and UC (uterine
contraction), two continuous variables monitored during birth.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 24
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Conditional independence LV model

» A canonical LV model, given W; = X;3 + ¢, is

Y L QilW;
Yi ~ N(,uc + )\CVV,',O'Z)
Q; ~ Poisson(exp (g + AgW;))

» This implies that the two marginal regressions share a common
random effect so they are marginally dependent (and conditionally
independent)

» The induced dependence is not analytically available.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 25
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Conditional independence is a Copula LV

» The copula alternative is, conditional on W;,

H(Y:, QiIW;) = Co,(Fy (Yi|Wi), Fo(QilWh)), 6i = k(& + & W)
Yi ~ N(ue + AW, 02); Q; ~ Poisson(exp (g + AaW;))

» The whole joint distribution of (Y, Q) is varying with W not just
the marginals.

» The copula captures the residual dependence on W after the
marginal effects have been accounted for.

» The previous model is obtained when the copula is the independence
copula.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 26
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Why the Conditional Copula?

> Yix ~ N(fi(x),0;) x € R?

» True marginal means:
> fi(x) = 0.6sin(5x1) — 0.9sin(2x2)
> f(x) = 0.6sin(3x1 + 5x2)
» o1 =0,=0.2 X1 L X.

» Copula: Frank with 6(x) = 0.71

» Suppose x; is not observed so inference is based only on x;

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 27
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Why the Conditional Copula?

> Yix ~ N(fi(x),0;) x € R?

» True marginal means:
> fi(x) = 0.6sin(5x1) — 0.9sin(2x2)
> f(x) = 0.6sin(3x1 + 5x2)
» o1 =0,=0.2 X1 L X.

» Copula: Frank with 6(x) = 0.71

» Suppose x; is not observed so inference is based only on x;

(Levi and Craiu, 2018)

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 27
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CTG: The LV Copula Model
> (Q;, Yi)|W; has joint density

fov)(a.y) = fe(y) - [Cae (Fa(a), Fe(y)) — Caje (Fa(a—), Fe(v))] .

where

0
Cd\c(uda uc) = ou C(ud, uc)-

» Data Augmentation: Introduce latent variable Z such that

d
Q= Fd (FZ(Z))v
» The copula between (Y, Z) is the same as the copula between
(Y. Q)
» We can choose the distribution of Z to help the computation.

» For instance if we use a Gaussian copula, it helps to have
Z ~ N(0,1)

» Craiu and Sabeti (2012); Smith and Khaled (2012).

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 28
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CTG: The Augmented LV Copula Model

» The dependence between Y, Z and Q is defined by their joint
conditional distribution

f(Q,Z,Y)|W(qazvy ‘ W) = h(Z,y | WvMCa)‘Ca"/"Cag)
’ ILF;l(Fd(qf\wd(ud,Ad,w)))§z<F;I(Fd(qlw(ud,xd,w)))‘
> Let &£ = (&,&1) € R? and A(w) = & + & - w. Then we set

eA(W) _ e_A(W)
0w, &) = SAW) _ e—A(w)

as the correlation parameter of the bivariate Gaussian conditional
copula of (Y, Z)|W = w.

» Parameters are a priori independent

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 29
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Model Selection: WAIC

» The WAIC is defined as

WAIC(M) = =2fit(M) + 2p(M), (3)

where the model fitness is
fit(M) = log (E [Pr(y;, gilw, M)]) (4)

i=1
and the penalty

p(M) = Var (log (Pr(yi, gilw, M))), (5)

i=1

where w contains all the parameters and latent variables in the
model.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 30
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Spotlight on dependence: A conditional WAIC

» \We use the following two conditional WAICs (Levi and Craiu, 2018)

CWAICy (M) = -2 Z log (E [Pr(yi|qi, w, M)]) +

i=1

+2 Z Var (log (Pr(yilqi, w, M))),

i=1

CWAICq)y (M) = =2 log (E [Pr(gilys,w, M)]) +

i=1

42 Z Var (log (Pr(qi|yi,w, M))),

i=1

> %(CWAIC1|2 + CWAIC,|;) is asymptotically equivalent to the
following CCV for the marginal (conditional) distribution

covm) = ; {Z log (Pr(yilar, D—i, M) + ) .og(pr(q,.|y,.,p,,M))} :

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 31
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Simulation Experiment

» Generate data using a Gaussian copula

Gaussian copula
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Figure: Bivariate scatterplot of the generated data with Gaussian copula,
and Poisson and normal marginals
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Simulation Experiment

» CWAICy|q and CWAICq)y selection criteria

Criteria\Copula | Gaussian Frank | Gumbel | Clayton Indep
CWAICy|q 1627.36 | 1642.36 | 2395.17 | 1637.17 | 1606.31

CWAICqy 950.71 982.42 | 1673.57 | 976.05 997.43
Average 1289.04 | 1312.39 | 2034.37 | 1306.61 | 1301.87
Radu Craiu
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Simulation Experiment

Gaussian copula

B> Ha
ity e s
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Figure: Traceplots for i7's components.
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Simulation Experiment

Gaussian copula

B B> Ha
Ay He Ac
o & &

| 61 52 >\d )\c 51

Mean | 1.18 048 090 0.84 3.10
True 1 0.5 1 1 3
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CTG: The data
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CTG: Estimates

» WAIC, WAICy|q and WAICqy all point to the Gaussian copula
(over Gumbel, Frank, Clayton, Independence).

» The posterior means
| BL(FM) B2 (UQ)  Ag Ac &
Mean | 0.1744  0.3147 05101 0.6038 -2.3401

Gaussian copula

N N
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