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Copulas for serially correlated data with hidden structures

This project was done in collaboration with

Robert Zimmerman (Imperial College London)

Vianey Leos Barajas (Toronto)

Paper: Copula Modelling of Serially Correlated Multivariate Data with
Hidden Structures (JASA, 2024).
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Hidden Markov Models: Briefly put
▶ A hidden Markov model (HMM) pairs an observed time series

{Yt}t≥1 ⊆ Rd with a Markov chain {Xt}t≥1 on some state space X ,
such that the distribution of Ys | Xs is independent of Yt | Xt for
s ̸= t:

· · · Xt−2 Xt−1 Xt Xt+1 Xt+2 · · ·

Yt−2 Yt−1 Yt Yt+1 Yt+2

▶ Yt,h|{Xt = k} ∼ fk,h(·|λk,h) ∀h = 1, . . . , d
▶ {Xt} is a Markov process (finite state space X ) with initial

probability mass distribution {πi}i∈X and transition probabilities
{γi,j}i,j∈X
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Inferential aims for HMMs

▶ Typically, the chain {Xt}t≥1 is partially or completely unobserved.

▶ The hidden states can correspond to a precise variable (occupancy
data) or might be postulated (psychology, ecology, etc)

▶ Aim 1: Model the data generating mechanism Nasri et al. (2020)

▶ Aim 2: Decode (i.e., classify) or predict the Xt ’s from the observed
data.
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Fusion of Multiple Data Sources

▶ In real-world applications (sports, stock exchange, animal
movement, etc), various sensors capture multiple streams of data,
which are “fused” into a multivariate time series {Yt}t≥1

▶ In such situations, the components of any Yt = (Yt,1, . . . , Yt,d)
cannot be assumed independent (even conditional on Xt)

▶ The corresponding assumption for HMMs – that of contemporaneous
conditional independence Zucchini et al. (2017) – is often violated

▶ Instead, it is common to assume that Yt follows a multivariate
Gaussian distribution, but this places limits on marginals and
dependence structures

▶ What if the strength of dependence between the components of Yt
could be informative about the underlying state Xt?
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Occupancy Data
▶ The ability to detect whether a room is occupied using sensor data

(such as temperature and CO2 levels)

▶ Consider three publicly-available labelled datasets presented by
Candanedo and Feldheim (2016) which contain multivariate time
series of four environmental measurements (light, temperature,
humidity, CO2) and one derived metric (the humidity ratio), as well
as binary indicators for whether the room was occupied or not at the
time of measurement

Figure: Pseudo-observations computed from unoccupied (Panel 1) and
occupied (Panel 2) subsets.

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 6



Serially correlated data with hidden structures Latent Variable Models References

Copulas: The Joys

▶ Copulas are mathematical devices used to model dependence
between random variables regardless of their marginals.

▶ Copulas are useful for data fusion/integration as they lead to
coherent joint models, even when the marginals are in different
families or of different types.

▶ Copulas unlock information contained in the dependence part of the
distribution (second-order) that complements the information in the
marginals.

▶ Copulas extend statistical methods beyond the use of a multivariate
Gaussian or Student.
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At the root of it all, a theorem

▶ Copulas are distribution functions on [0, 1]d that model dependence
between continuous random variables.

▶ Sklar’s Theorem: If Y1, Y2, . . . Yd are continuous r.v.’s with
distribution functions (df) F1, . . . , Fd , there exists an unique copula
function C : [0, 1]d → [0, 1] such that

H(t1, . . . , td) = P(Y1 ≤ t1, . . . , Yd ≤ td) = C(F1(t), . . . , Fd(td)).

▶ The copula bridges the marginal distributions of Y1, . . . , Yd with the
joint distribution. It corresponds to a distribution on [0, 1]d with
uniform margins.

▶ This can be extended to conditional distributions and copulas:

P(Y1 ≤ t1, . . . , Yd ≤ td |X ) = C(F1(t|X ), . . . , Fd(td |X )|X ).
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Copulas Within HMMs

▶ Here we consider a HMM {(Yt , Xt)}t≥1 ⊆ Rd × X in which the
state-dependent distributions use copulas:

Yt | (Xt = k) ∼ Hk(·) = Ck

(
Fk,1(· ; λk,1), . . . , Fk,d(· ; λk,d)

∣∣∣ θk︸ ︷︷ ︸
depends on the hidden state value k

)
.

▶ Ck(·, . . . , · | θk) is a d-dimensional parametric copula

▶ {Xt}t≥1 is a Markov process on finite state space X = {1, 2, . . . , K}
and K is known.

▶ In this model, all aspects of the state-dependent distributions are
allowed to vary between states
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Information in the dependence
▶ For a range of θ ∈ [0, 100), we simulated a bivariate time series of

length T = 100 from the 2-state HMM

Yt | (Xt = k) ∼ CFrank
(
N (0, 1), N (0, 1) | (−1)k · |θ|

)
, k = 1, 2

and then separately assessed the accuracy of a standard decoding
algorithm, first assuming independent margins and then the true
model:

Figure: Zero-one losses for independent margins (red dots) and true model
(blue dots)
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Estimation with missing data

▶ Data consist in observed Y1:T and missing X1:T

▶ Parameters are η = {λh,k}h=1:d
k=1:T

∪ {θk}k=1:T ∪ {γi,j}i=1:K
j=1:K

∪{πj}j=1:K .
▶ The complete-data log-likelihood for one trajectory of the copula

HMM is given by

ℓcom (η | y1:T , X1:T ) = πX1 +
T∑

t=2
log γXt−1,Xt +

d∑
h=1

log fXt ,h(yt,h; λXt ,h)

+
T∑

t=1
log cXt (FXt ,1(yt,1; λXt ,1), . . . , FXt ,1(yt,d ; λXt ,d) | θXt ) .

(1)
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Computation for HMMs Via the EM Algorithm

▶ Without copula, the estimation is done via the EM algorithm (aka
Baum-Welch)

▶ The complete-data log-likelihood is written in terms of the state
membership indicators Uk,t = 1Xt =k and Vj,k,t = 1Xt−1=j,Xt =k

▶ In the E-Step, these indicators are estimated by the conditional
probabilities ûk,t = P (Xt = k | Y1:T = y1:T ) and
v̂j,k,t = P (Xt−1 = j , Xt = k | Y1:T = y1:T ), which are computed
based on current parameter estimates

▶ This only requires evaluating the state-dependent densities at each
of the observations y1, . . . , yT (this is “OK”)
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The M-Step Is Hard

▶ In the M-Step, the resulting complete-data log-likelihood is
maximized with respect to all parameters in the model
simultaneously
▶ Only for the simplest univariate models do the state-dependent

MLEs exist in closed form; otherwise, one must resort to numerical
methods (this is hard and unstable!)

▶ Evaluating a copula density ck(·, . . . , · | θk) in high dimensions is slow
▶ When the state-dependent distributions in an HMM are copulas,

performing the M-Step directly requires the evaluation of

argmax
{θk },{λk,h}

{ K∑
k=1

T∑
t=1

ûk,t

[
log ck

(
Fk,1(yt,1; λk,1), . . . , Fk,d(yt,d ; λk,d)

∣∣∣ θk

)
+

d∑
h=1

log fk,h(yt,h; λk,h)
]}

▶ This is very unstable (and slow)
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Inference Functions for Margins

▶ Likelihood-based inference for copulas is easier when the goal is to
estimate θ alone in the presence of known margins

▶ Why not perform inference on the marginal distributions first, and
then on the copula itself?

▶ In the context of iid data, this is exactly the inference functions for
margins (IFM) approach of Joe and Xu (1996):
▶ First estimate each λh by its “marginal MLE” λ̂h given {Yt,h}t≥1, for

h ∈ {1, . . . , d}
▶ Then estimate θ assuming fixed marginals F1(·; λ̂1), . . . , Fd(·; λ̂d)

▶ One can show that the IFM estimator is consistent and
asymptotically normal (although relatively less efficient than the
MLE)
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New problems
▶ The EIFM algorithm is not an GEM algorithm

T∑
t=1

ût · log
(

fh(yt,h; λ
(s)
h )

)
≤

T∑
t=1

ût · log
(

fh(yt,h; λ
(s+1)
h )

)
, h ∈ {1, . . . , d} (2)

does not imply

T∑
t=1

ût · log
(

c
(

F1(yt,1; λ
(s)
1 ), . . . , Fd(yt,d ; λ

(s)
d )

∣∣∣ θ(s)
))

≤
T∑

t=1
ût · log

(
c
(

F1(yt,1; λ
(s+1)
1 ), . . . , Fd(yt,d ; λ

(s+1)
d )

∣∣∣ θ(s)
))

.

▶ The EIFM algorithm will converge (to a local or global maximum).
▶ The estimator is consistent and asymptotically normal (under mild regularity

conditions).
▶ EIFM as a version of the ES algorithm of Elashoff and Ryan (2004).
▶ Use asymptotic theory of M-estimators for HMMs Jensen (2011).
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Does This Work?

▶ For T ∈ {100, 1000, 5000} and d ∈ {2, 5, 10}, we simulated a
d-dimensional time series of length T from the 2-state HMM

Yt | (Xt = 1) ∼ CFrank
(
(N (µ1,h = −h, 1))d

h=1 | θ1 = 3
)

Yt | (Xt = 2) ∼ CClayton
(
(N (µ2,h = h, 1))d

h=1 | θ2 = 3
)

and estimated η = (µ1,1, . . . , µ2,d , θ1, θ2) using both approaches

▶ Applied to the basic EM algorithm, R’s optim with L-BFGS-B (i.e.,
quasi-Newton with box constraints) typically fails as soon as d ≥ 3
▶ The procedure is extremely sensitive to initial values and requires
η̂(0) ≈ η just to avoid overflow

▶ This kind of tuning is very tedious or impossible in high dimensions
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Does This Work?
▶ We keep track of the time (in seconds) until the algorithm

converges, and the L2 error of the resulting estimate, ϵ = ∥η − η̂∥2
▶ We used the lbfgsb3c package, which is more stable than optim

d = 2 d = 5 d = 10
T = 100 111.9 s, ϵ = 0.14 123.4 s, ϵ = 299.98 111.8 s, ϵ > 109

T = 1000 166.6 s, ϵ = 0.63 169.5 s, ϵ > 1011 418.23 s, ϵ = 725.06
T = 5000 ? ? ?

Table: EM Algorithm

d = 2 d = 5 d = 10
T = 100 5.1 s, ϵ = 0.29 3.0 s, ϵ = 0.94 4.2 s, ϵ = 0.58
T = 1000 34.4 s, ϵ = 0.57 22.9 s, ϵ = 0.60 34.4 s, ϵ = 0.80
T = 5000 172.6 s, ϵ = 0.13 106.2 s, ϵ = 0.12 168.7 s, ϵ = 0.19

Table: EFM Algorithm
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Numerical Experiment I

▶ Generative model:

Yi | (Xi = k) ∼ Ck (SN(·; ξk,1, ωk,1, αk,1), SN(·; ξk,2, ωk,2, αk,2) | τk) ,

for k ∈ {1, . . . , 4}.

State Copula family τk ξk,1 ωk,1 αk,1 ξk,2 ωk,2 αk,2

1 Clayton 0.2 -4 1 5 -1 1 -3
2 B4 0.4 -2 1 3 2 1 -3
3 Gaussian 0.6 0 1 5 3 1 -5
4 t(ν=5) 0.8 2 1 3 4 1 -5

Table: True parameters for the state-dependent distributions.
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Numerical Experiment I

T : 500 1000 2500 5000

Stopping Rule Tolerance:

0.01 14 24 23 15
0.001 17 26 25 17
0.0001 36 59 62 39
0.00001 230 115 460 269

Classifier: k-means 0.9020 0.9090 0.9200 0.9196
Local state decoding 0.9640 0.9640 0.9696 0.9732

Table: For each T ∈ {500, 1000, 2500, 5000}: (Top rows) Number of iterations taken by the EIFM
algorithm applied to Y1:T before stopping using L1-norm tolerances in
{0.01, 0.001, 0.0001, 0.00001}. (Bottom rows) Classification accuracy of initial k-means clustering
and local decoding with parameter estimates provided by the EIFM algorithm.
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Occupancy Data
▶ Several families of parametric copulas were tried

Family AIC (State 1) AIC (State 2)

Gauss -370.786 -59.281
t -437.542 -71.291

Clayton -474.836 -66.087
Gumbel -484.252 -72.437

Frank -273.613 -66.497
Joe -490.103 -64.995

Galambos -295.549 -71.031
Hüsler-Reiss -282.452 -61.547

BB1 -497.013 -70.509
BB6 -495.401 -70.435
BB7 -518.923 -68.207
BB8 -490.223 -66.738

Tawn (type 1) -411.847 -76.976
Tawn (type 2) -422.268 -55.382

Table: AICs for unoccupied (state 1) and occupied (state 2) classifications
of the occupancy data.
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Occupancy Data

Classifier Train Test 1
k-means clustering 0.865 0.818
Independence copulas within HMM 0.895 0.846
BB7/Tawn copulas within HMM 0.900 0.852

Table: Overall state classification accuracy for the training dataset and the test
dataset, using k-means clustering and local decoding via the HMM with
independent margins and the copula-within-HMM model.
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Latent Variable Models with Copulas

This project is currently developed in collaboration with

Robert Zimmerman (Imperial College London)
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Latent Variables (LV)

▶ The variable of interest W is sometimes impossible to measure
directly
▶ State of the economy
▶ Traffic in a city
▶ State of your health
▶ State of a complex disease

▶ Instead, one measures
▶ Y = (Y1, . . . , Yk)T whose components are surrogates of W and each

provide partial information about W
▶ Covariate X ∈ Rp

▶ We are often interested in the explanatory power of X for W .
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An example

▶ Cardiotocography (CTG) is a medical procedure that monitors the
fetal heart rate.

▶ The LV is the fetus’ underlying state of health during birth, W .

▶ Our surrogate response is the bivariate vector (Q, Y ) where
▶ Q is the number of peaks (acceleration followed by a deceleration of

heart beats) for the signal recorded by the CTG
▶ Y is the log of mean short-term ”beat-to-beat” variability (MSTV)

where the short-term variability (STV) is obtained by measuring the
time between successive R waves (cardiac systoles) of the fetus’
electrocardiogram.

▶ The covariates are FM (fetal movement) and UC (uterine
contraction), two continuous variables monitored during birth.
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Conditional independence LV model

▶ A canonical LV model, given Wi = Xiβ + ϵ, is

Yi ⊥ Qi |Wi

Yi ∼ N(µc + λcWi , σ2)
Qi ∼ Poisson(exp (µd + λdWi))

▶ This implies that the two marginal regressions share a common
random effect so they are marginally dependent (and conditionally
independent)

▶ The induced dependence is not analytically available.
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Conditional independence is a Copula LV

▶ The copula alternative is, conditional on Wi ,

H(Yi , Qi |Wi) = Cθi (FY (Yi |Wi), FQ(Qi |Wi)), θi = κ−1(ξ0 + ξ1Wi)
Yi ∼ N(µc + λcWi , σ2); Qi ∼ Poisson(exp (µd + λdWi))

▶ The whole joint distribution of (Y , Q) is varying with W not just
the marginals.

▶ The copula captures the residual dependence on W after the
marginal effects have been accounted for.

▶ The previous model is obtained when the copula is the independence
copula.
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Why the Conditional Copula?
▶ Yi |x ∼ N(fi(x), σi) x ∈ R2

▶ True marginal means:
▶ f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
▶ f2(x) = 0.6 sin(3x1 + 5x2)
▶ σ1 = σ2 = 0.2, X1 ⊥ X2.

▶ Copula: Frank with θ(x) = 0.71

▶ Suppose x2 is not observed so inference is based only on x1

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

x_1

K
e

n
d

a
ll
s
 
T
a

u

(Levi and Craiu, 2018)

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 27



Serially correlated data with hidden structures Latent Variable Models References

Why the Conditional Copula?
▶ Yi |x ∼ N(fi(x), σi) x ∈ R2

▶ True marginal means:
▶ f1(x) = 0.6 sin(5x1) − 0.9 sin(2x2)
▶ f2(x) = 0.6 sin(3x1 + 5x2)
▶ σ1 = σ2 = 0.2, X1 ⊥ X2.

▶ Copula: Frank with θ(x) = 0.71

▶ Suppose x2 is not observed so inference is based only on x1

0.0 0.2 0.4 0.6 0.8 1.0

0
.
0

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

x_1

K
e

n
d

a
ll
s
 
T
a

u

(Levi and Craiu, 2018)
Radu Craiu Statistical Elucidation of Latent Structures via Copulas 27



Serially correlated data with hidden structures Latent Variable Models References

CTG: The LV Copula Model
▶ (Qi , Yi)|Wi has joint density

f(Q,Y )(q, y) = fc(y) ·
[
Cd|c (Fd(q), Fc(y)) − Cd|c (Fd(q−), Fc(y))

]
,

where
Cd|c(ud , uc) = ∂

∂uc
C(ud , uc).

▶ Data Augmentation: Introduce latent variable Z such that

Q d= F −
d (FZ (Z )),

▶ The copula between (Y , Z ) is the same as the copula between
(Y , Q)

▶ We can choose the distribution of Z to help the computation.
▶ For instance if we use a Gaussian copula, it helps to have

Z ∼ N(0, 1)
▶ Craiu and Sabeti (2012); Smith and Khaled (2012).
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CTG: The Augmented LV Copula Model

▶ The dependence between Y , Z and Q is defined by their joint
conditional distribution

f(Q,Z ,Y )|W (q, z , y | w) = h(z , y | w , µc , λc ,ψc , ξ)
· 1F −1

Z (Fd (q−|φd (µd ,λd ,w)))≤z<F −1
Z (Fd (q|φd (µd ,λd ,w))).

▶ Let ξ = (ξ0, ξ1) ∈ R2 and A(w) = ξ0 + ξ1 · w . Then we set

θ(w , ξ) = eA(w) − e−A(w)

eA(w) − e−A(w)

as the correlation parameter of the bivariate Gaussian conditional
copula of (Y , Z )|W = w .

▶ Parameters are a priori independent
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Model Selection: WAIC

▶ The WAIC is defined as

WAIC(M) = −2fit(M) + 2p(M), (3)

where the model fitness is

fit(M) =
n∑

i=1
log (E [Pr(yi , qi |ω, M)]) (4)

and the penalty

p(M) =
n∑

i=1
Var ( log (Pr(yi , qi |ω, M))) , (5)

where ω contains all the parameters and latent variables in the
model.
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Spotlight on dependence: A conditional WAIC
▶ We use the following two conditional WAICs (Levi and Craiu, 2018)

CWAICY |Q(M) = − 2
n∑

i=1

log (E [Pr(yi |qi , ω, M)]) +

+ 2
n∑

i=1

Var ( log (Pr(yi |qi , ω, M))) ,

CWAICQ|Y (M) = − 2
n∑

i=1

log (E [Pr(qi |yi , ω, M)]) +

+ 2
n∑

i=1

Var ( log (Pr(qi |yi , ω, M))) ,

▶ 1
2 (CWAIC1|2 + CWAIC2|1) is asymptotically equivalent to the
following CCV for the marginal (conditional) distribution

CCV(M) = 1
2

{
n∑

i=1

log (Pr(yi |qi , D−i , M)) +
n∑

i=1

log (Pr(qi |yi , D−i , M))

}
.
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Simulation Experiment

▶ Generate data using a Gaussian copula
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Figure: Bivariate scatterplot of the generated data with Gaussian copula,
and Poisson and normal marginals
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Simulation Experiment

▶ CWAICY |Q and CWAICQ|Y selection criteria

Criteria\Copula Gaussian Frank Gumbel Clayton Indep
CWAICY |Q 1627.36 1642.36 2395.17 1637.17 1606.31
CWAICQ|Y 950.71 982.42 1673.57 976.05 997.43

Average 1289.04 1312.39 2034.37 1306.61 1301.87

Radu Craiu Statistical Elucidation of Latent Structures via Copulas 33



Serially correlated data with hidden structures Latent Variable Models References

Simulation Experiment
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Figure: Traceplots for η’s components.
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Simulation Experiment
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Radu Craiu Statistical Elucidation of Latent Structures via Copulas 35



Serially correlated data with hidden structures Latent Variable Models References

CTG: The data
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CTG: Estimates

▶ WAIC , WAICY |Q and WAICQ|Y all point to the Gaussian copula
(over Gumbel, Frank, Clayton, Independence).

▶ The posterior means

β1 (FM) β2 (UC) λd λc ξ1

Mean 0.1744 0.3147 0.5101 0.6038 -2.3401

0.1 0.2 0.3

β1

0.20 0.25 0.30 0.35 0.40

β2

1.20 1.25 1.30 1.35

μd

0.45 0.50 0.55 0.60

λd

0.05 0.10

μc

0.52 0.56 0.60 0.64

λc

0.05 0.10 0.15

σ2

-15 -10 -5 0

ξ0

-7.5 -5.0 -2.5 0.0

ξ1

Gaussian copula
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