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Abstract

An important task in the study of fast radio bursts (FRBs) remains the automatic classification of repeating and
nonrepeating sources based on their morphological properties. We propose a statistical model that considers a
modified logistic regression to classify FRB sources. The classical logistic regression model is modified to
accommodate the small proportion of repeaters in the data, a feature that is likely due to the sampling procedure
and duration and is not a characteristic of the population of FRB sources. The weighted logistic regression hinges
on the choice of a tuning parameter that represents the true proportion τ of repeating FRB sources in the entire
population. The proposed method has a sound statistical foundation, direct interpretability, and operates with only
five parameters, enabling quicker retraining with added data. Using the CHIME/FRB Collaboration sample of
repeating and nonrepeating FRBs and numerical experiments, we achieve a classification accuracy for repeaters of
nearly 75% or higher when τ is set in the range of 50%–60%. This implies a tentative high proportion of repeaters,
which is surprising, but is also in agreement with recent estimates of τ that are obtained using other methods.

Unified Astronomy Thesaurus concepts: Radio transient sources (2008); Classification (1907); Astrostatistics
techniques (1886); Sampling distribution (1899); Astrostatistics distributions (1884); Regression (1914); Nonlinear
regression (1948); Linear regression (1945)

1. Introduction

Fast radio bursts (FRBs) represent an enigmatic phenomenon
in astrophysics. FRBs are dispersed, isolated, millisecond-long
radio pulses that are similar in appearance to single pulses from
Galactic pulsars. The arrival of these radio pulses show a
frequency-dependent delay (quantified by the dispersion
measure (DM)) due to the electromagnetic wave’s path through
free electrons in the Universe. FRBs have the defining
characteristic of a DM that exceeds the maximum DM
expected from our Galaxy, suggesting that they are very
luminous and of extragalactic origin (D. R. Lorimer et al. 2007;
J. M. Yao et al. 2017).

The first FRB was identified in archival Parkes multibeam
pulsar survey data by D. R. Lorimer et al. (2007), and was
suggestive of an extragalactic origin. Since then, there has been
rapid progress in the observation of these enigmatic events and
their use as probes of the intergalactic medium (S. Chatterjee 2021;
CHIME/FRB Collaboration et al. 2021; M. Bailes 2022). The

discovery of FRBs has opened up new research avenues in
astrophysics as they have the potential to help us better understand
the distribution of matter in the Universe or the nature of dark
matter (H.-N. Lin & Y. Sang 2021; Z.-W. Zhao et al. 2023).
The biggest mystery about FRBs is their origin or progenitor

object(s). The FRB enigma is made more mysterious by the fact
that some FRBs are observed to burst repeatedly (repeaters),
while others have only been observed to burst once (nonrepea-
ters; L. G. Spitler et al. 2016). Models that explain the progenitors
of FRBs are thus typically assigned to one of two broad
categories. The first category considers noncataclysmic explana-
tions, while the second category assumes FRBs are the result of a
catastrophic event that destroys the astrophysical source. In the
early years of FRB discoveries, the lack of repeating FRBs
supported catastrophic models. The assumption of two distinct
subpopulations of FRBs (repeaters and nonrepeaters) is now
supported by arguments made by Z. Pleunis et al. (2021), which
are based on the morphological differences between the repeating
and nonrepeating FRBs. While the number of FRB repeater
sources continues to grow, the total published sample is currently
only 53.14
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The number of known FRB repeaters is small compared to
the total FRB population (roughly 2.6% are repeaters; CHIME/
FRB Collaboration et al. 2023b), but observational selection
effects strongly influence this number. The Canadian Hydrogen
Intensity Mapping Experiment (CHIME) telescope, the world’s
leading detector of FRBs, relies on the rotation of the Earth to
observe the whole northern sky over the course of each day.
Due to its location in Penticton, BC at a latitude of 49.32
(M. Amiri et al. 2018) CHIME observes some parts of the sky
continuously, and observes other parts as little as 5 minutes day–1

(M. Amiri et al. 2018). This means that some areas of the sky are
monitored as little as 0.3% of the time each day. Thus, many
more FRB repeaters could exist, but have not been detected
due to censoring. Recent works by C. W. James (2023) and
S. Yamasaki et al. (2023), which take into account the
observational selection effects of CHIME, have suggested that
the true fraction of repeaters is closer to 50%. Surprisingly, we
have reached a similar conclusion through an entirely indepen-
dent approach that we present here.

In this paper, we propose a principled and interpretable
statistical model to predict whether new FRBs are repeaters or
nonrepeaters. Our method uses the morphological character-
istics of FRBs (e.g., bandwidth and peak frequency) as input,
and is based on weighted logistic regression for imbalanced
data sets, the details of which are described in Section 3.
In short, our classification algorithm can be used to identify
potential FRB repeater candidates. Specifically, given a new
FRB source for which only one burst has been recorded, the
algorithm will provide the probability that this FRB source is
actually a repeater. Having this kind of predictive tool could be
useful for follow-up observations. For example, if an FRB
source is given a high probability of being a repeater, but is in
an area of the sky observed only 5 minutes day–1 by CHIME,
then one could allocate time at other telescopes to observe it
more regularly, or one could search through archival data from
other telescopes to find previous bursts. While developing our
prediction method and algorithm, using techniques entirely
independent from C. W. James (2023) and S. Yamasaki et al.
(2023), we arrive at a similar, albeit very tentative, conclusion
about the true percentage of repeating FRBs.

Creating classification and prediction algorithms for FRBs is
notably difficult because of the unique structure of the data.
There are at least two major challenges to overcome.

1. Challenge 1. The observed number of repeaters is
significantly outweighed by the observed number of
nonrepeaters. This imbalance in the data leads to biased
inference when it is not taken into account. Some studies
do not account for the imbalance (e.g., B. H. Chen et al.
2021), while others have addressed the imbalance
through resampling techniques (X. Yang et al. 2023).
However, the resampling approach does not account for
the intrinsic reduction of variability of features in the
repeater subpopulation.

2. Challenge 2. For training data, the labels for FRB repeaters
are almost entirely certain, but the labels for FRB
nonrepeaters are not. Any nonrepeater FRB may actually
be a repeater that we have not yet seen repeat. This
corresponds to a mislabelling problem in the training data for
any classification algorithm—i.e., there may be repeaters that
are wrongly labeled as nonrepeaters. Statistical approaches to
mitigate this usually rely on modeling the probability of an
error in labeling (N. Nagelkerke & V. Fidler 2015;

H. Hung et al. 2018) which, in the FRB classification case,
is impossible.

Previous methods to predict and/or classify repeating FRBs
have used black box machine learning approaches (e.g.,
B. H. Chen et al. 2021; J.-W. Luo et al. 2022; J.-M. Zhu-Ge
et al. 2022; X. Yang et al. 2023, among others). However, these
previous methods inadequately handle some of the challenges
posed by the particular characteristics of FRB data. For
instance, B. H. Chen et al. (2021), J.-W. Luo et al. (2022), and
J.-M. Zhu-Ge et al. (2022) consider subbursts, which we will
rename “substructures” as explained later, and repeater bursts
as independent data points, and they do not differentiate
between them when creating training and test data. Assuming
independence makes it possible to split bursts from the same
source and put them into the training and the test data.
However, this approach will artificially (i) increase the
similarity between the training and test sets, since FRBs from
the same source will have some dependency and, consequently,
(ii) enhance the model’s classification performance because it is
easier to identify a repeater source in the test data once one or
more of its bursts have been used in the training data.
Consequently, the use of subbursts from the same source in test
and training data exaggerates the accuracy of the model’s
predictions.
The method that we propose accounts for the imbalance

between the number of repeaters and nonrepeaters by weighting
differently the information contained in each observation. This
approach relies on a tuning parameter that represents the true
proportion of repeater FRBs in the Universe. While a precise
value is elusive, our analysis suggests that the model is robust to
values of this tuning parameter between 50% and 60%. Our
model is also able to identify which of the nonrepeaters to date
are most likely to repeat. This information can be used for
strategic and efficient monitoring of the sky.
Our paper is organized as follows. First, we introduce our

data selection procedure, including which FRB features are
used in our analysis (Section 2). Next, we present the proposed
method of weighted logistic regression for imbalanced data
sets, describe training, validation, and test data sets, and
introduce the tuning parameter τ (Section 3). We then present
our results (Section 4), and conclusions and directions for
future work (Section 5).

2. Data

We construct a statistical prediction model that will identify
repeaters based on their morphological features. Thus, we need
a training set and a validation set with known labels (i.e., which
FRBs are nonrepeaters and which are repeaters, albeit with the
caveats described in the previous section) to determine the
accuracy of our methodology. Once our statistical model is
trained and validated, then we can apply it to a separate test set
of data.

2.1. CHIME/FRB Catalog

The majority of our FRB data comes from the first catalog of
CHIME (CHIME/FRB Collaboration et al. 2021, 2023a),
hereafter referred to as Catalog 1. CHIME is a transit radio
telescope operating across the 400–800 MHz range and located
on the grounds of the Dominion Radio Astrophysical
Observatory in British Columbia, Canada. The original
intention for CHIME was to map neutral hydrogen gas as a
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measure of dark energy, but the large collecting area, wide
radio bandwidth, and powerful correlator make it an excellent
instrument for the detection of FRBs as well.

The CHIME/FRB Collaboration’s software pipeline searches
for FRBs in real time (M. Amiri et al. 2018, 2022). The first FRB
catalog recorded 536 FRBs between 2018 July 25 and 2019 July
1, and at the time increased the sample of FRB sources by more
than a factor of 5 (E. Petroff et al. 2022). By using data from only
one telescope, we lessen the potential for different observational
biases. An FRB, for our purposes, is constrained to the start and
end of a single FRB observation, as defined by the CHIME
pipeline. CHIME/FRB’s first catalog contains 474 apparent
nonrepeating sources and 62 bursts from 18 repeating sources.
For every FRB, the catalog contains 12 parameters that can be
considered possible classification features.

2.2. Data Selection and Handling

Our exploratory variable selection analysis confirmed that
we need only consider features that were identified as useful in
previous work (see, e.g., Z. Pleunis et al. 2021), as some
variables seemed to have no influence on the classification
results. The morphological features we consider are taken from
the CHIME/FRB catalog and consist of:

1. the boxcar width (a measure of the FRB burst duration in
seconds),

2. the peak frequency (in units of MHz),
3. the intrinsic width of the FRB associated with the event in

seconds, as modeled with the fitburst pipeline (i.e.,
without dispersion smearing and scatter broadening; E.
Fonseca et al. 2024),

4. the number of substructures, referred in other works as
subbursts,15 and

5. the emitted bandwidth in units of MHz.

The emitted bandwidth is obtained by taking the difference
between the high and low frequencies for detection at the full
width at tenth maximum, which is the width of the FRB signal at
the level corresponding to the difference between frequencies at
which the signal reaches 10% of its peak intensity. Previous work
has only looked at emitting bandwidth and not the peak
frequency, but we consider the latter as a distinct feature. Detailed
descriptions of the complete set of parameters are presented by
CHIME/FRB Collaboration et al. (2021). In the case of FRBs
with substructures, we define the corresponding FRB-specific
features as the mean value across substructures for each feature.

3. Methods

The proposed model is based on logistic regression
(P. McCullagh & J. Nelder 1989; C.-Y. J. Peng et al. 2002),
which is reviewed in Section 3.1. In Section 3.2, we introduce
from the statistics literature methods developed to account for

imbalanced data sets in logistic regression, which not only help
us address the low proportion of repeaters in the FRB sample,
but also allows u to introduce a tuning parameter for the
fraction of repeaters in the entire population.

3.1. Classification by Logistic Regression

Logistic regression is a widely used statistical model that
captures the relationship between a binary dependent variable and
a set of independent features, or covariates. Logistic regression
falls under the broader class of generalized linear models (see for
example C. E. McCulloch 1997), for which we assume that the
information in the covariates about the dependent variable is
conveyed through a linear combination of features,

( ) ( )X , 1h b b=

where η is called the linear predictor, β is a vector of model
parameters, and X is the covariate or design matrix. That is, each
row i in X is an FRB observation, with the first column representing
the intercept in the regression model and the subsequent columns
representing the covariates or features. The number of observations,
or rows, in X is N, and the number of columns is m+ 1.
Let {(yi, xi) : 1� i� N} denote the sample of size n

containing the observed FRBs, in which,

and xi ä R(m + 1) × 1 is the column vector of observation i that
contains m features. While the description is valid for all
m < N, for the FRB model we selected five features (m= 5):
the boxcar width, peak frequency, intrinsic width from fitburst,
number of substructures, and emitted bandwidth, as described
in Section 2.2.
The logistic regression model assumes that each yi follows a

Bernoulli distribution,

( ( )) ( )y Bern , 3i i bp~

where,

( ) ( )
( )

( )
e

e1
, 4i

i

i
bp =

+

b

b

h

h

and,

( )
( )

x x x

x x x , 5
i i

T
i i

i i i

0 1 1 2 2

3 3 4 4 5 5

b bh b b b
b b b

= = + +
+ + +

where xji is the jth feature or covariate of observation i.
The inference for β is based on the likelihood function,

( ∣ ) [ ( ) ( ( )) ] ( )( ) Data 1 . 6
i

N

i
y

i
y

1

1i ib b bp p= -
=

-

After replacing πi(β) using Equation (4) and taking the
logarithm, the log likelihood becomes,

( ∣ ) ( ) ( )( ) ( ) elog Data log 1 , 7
i

N
y

0

1 2 i iåb = - + bh

=

-

( )y
i
i

1 if the sample is from a repeater FRB source,
0 if the sample is from an apparently nonrepeating FRB source,

2i = ⎧
⎨⎩

15 Subbursts refer to substructure or multiple burst components under one
burst envelope.
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where Data = {(yi, xi) : 1� i� n}. Estimates of β can
be obtained through the maximum likelihood estimator,
ˆ ( ∣ )arg max training datab b=

b
, and cross validation can also

be used to further test and validate the classifier model.
With b̂ in hand, the logistic regression model (or classifier)

can then be used to classify any new FRB with observed
features ( )* * *x x x, ,1 5= ¼ as a repeater or nonrepeater.
That is, one uses b̂ and x

*

to obtain ( ˆ )*
i bh and ( ˆ )*i bp using

Equations (5) and (4), respectively. ( ˆ )*i bp is the probability P
(ith FRB is a repeater). Although the model returns a
probability value, in practice a threshold is used to enable
metrics for the classification performance. The most common
threshold is 0.5, and we use the criterion ( ˆ )* 0.5i bp > to predict
that the ith FRB is a repeater.

One drawback of logistic classifiers is that they do not
perform well with imbalanced data sets, i.e., situations in which
the number of cases (Yi = 1)16 is vastly different from the
number of controls (Yi = 0) (H. He & E. A. Garcia 2009;
A. Luque et al. 2019; M. Kim & K.-B. Hwang 2022). In the
next section, we describe potential solutions to alleviate this
challenge.

3.2. Imbalanced Data

In the statistics literature, imbalanced data refers to data for
which—due to observational bias, poor sampling design, or
population structure—the number of samples from different
subpopulations are substantially different. The imbalance may
be extrinsic, i.e., an unknown mechanism unrelated to the
model describing the samples hides the real subpopulation ratio
(M. Kim & K.-B. Hwang 2022). The imbalance may instead
(or also) be due to exogenous sampling, i.e., the imbalance
happens during the data sampling process (C. F. Manski &
S. R. Lerman 1977). The imbalance may also be intrinsic
in situations where only a small fraction of items belong to a
subpopulation.

In this study, we have an imbalanced data set between
repeaters and nonrepeaters (CHIME/FRB Collaboration et al.
2023b). The number of bursts from nonrepeaters vastly
dominates the number of bursts from repeaters. Whether this
imbalance is extrinsic, intrinsic, or due to exogenous sampling
is still up for debate. Intuitively, it could be due to the fact that
some of the putative nonrepeaters in the sample would yield
another burst if they were monitored for a longer period of
time. The idea that the actual percentage of repeaters in the
population is much larger than the one computed directly from
the samples collected to date is gaining momentum. For
instance, C. W. James (2023) recently proposed a power-law
model for the FRB population as a function of redshift,
showing that at least 50% of bursts in CHIME’s first
catalog should come from intrinsic repeaters. Independently,
S. Yamasaki et al. (2023) suggests the necessity of correcting
the observed source count according to decl. to adequately
model the evolution of repeaters and nonrepeaters, in particular
the transition of apparent nonrepeaters when they are observed
to repeat. A model population incorporating this correction
results in an inferred repeater fraction that exceeds 50%.

Regardless of the cause of imbalanced data for FRBs, it is
this imbalance that hinders the direct application of a logistic
regression model to classify FRBs. Statistically, the data
imbalance leads to biased estimates of the parameters and
therefore biased predictive probabilities (P. McCullagh &
J. Nelder 1989; G. King & L. Zeng 2001a; H. He &
E. A. Garcia 2009; M. Maalouf & T. B. Trafalis 2011;
R. van den Goorbergh et al. 2022).
There are two general approaches to alleviate the imbalance

(H. He & E. A. Garcia 2009). The first is to make the data set
more balanced by using a subsample of the larger population.
In our case, this would mean using all the repeaters but only a
subsample of nonrepeaters, and then proceeding as if that were
the data in hand (see M. Kim & K.-B. Hwang 2022, for an
empirical study of these methods). This approach only makes
sense, however, if one knows the true proportion of repeaters in
the population. The second approach to make the data set more
balanced is to oversample the smaller class. However, such an
approach introduces additional variability in the analysis from
the subsampling procedure (see R. van den Goorbergh et al.
2022, for a discussion).
We therefore favor a third approach that applies weights to

rebalance the data. This is done using the method of weighted
logistic regression for imbalanced data sets developed by
G. King & L. Zeng (2001a, 2001b), M. Tomz et al. (2003),
M. Maalouf & T. B. Trafalis (2011), and M. Maalouf &
M. Siddiqi (2014). The weights are defined by introducing a
parameter τ to denote the proportion of repeaters among the
whole population of FRB sources. We assume τ is different
than the observed fraction in the sample. For simplicity, we
only consider the case of τ as a fixed fraction, independent of
redshift, luminosity, etc.
In weighted logistic regression, a weight wi is assigned to the

ith sample (G. King & L. Zeng 2001a, 2001b; M. Tomz et al.
2003; M. Maalouf & T. B. Trafalis 2011; M. Maalouf &
M. Siddiqi 2014). Following G. King & L. Zeng (2001b), the
weight for the ith sample is,

( ) ( )w y y1 , 8i r i nr id d= + -

where,

¯ ¯
( )

y y

1

1
, , 9nr rd

t
d

t
=

-
-

=

where r and nr stand for repeater and nonrepeater, respectively,
and ȳ is the number of repeaters in the data divided by the total
number of observed sources. When y= 1 (a repeating FRB),

¯
w r y

d= = t . In this way, δr could be interpreted as the

correction factor for the proportion of repeaters in the sample.
Note that each weight wi depends on the ratio τ. The latter is
not known exactly, and so we first treat τ as a tuning parameter,
trying various values of τ between zero and one. Ultimately,
though, we rely on a combination of the evidence provided by
S. Yamasaki et al. (2023), who state that τ ä (0.5, 1], and the
results of our initial exploration of τ settle on the value
τ = 0.55. This will be discussed further in Section 4.1.
The resulting (weighted) logistic regression log likelihood is

then,

( ∣ ) ( ) ( )( ) ( ) w elog Data log 1 , 10
i

n

i
y

0

1 2 i iåb = - + bh

=

-

where ηi is defined as in Equation (5).

16 We are using statistical notation here; a capital Y represents a random
variable that follows a distribution, while y indicates a realization of that
random variable, i.e., an observation with known value.
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The maximum likelihood estimator for β derived from
Equation (10) incurs an increase in bias and variance, given the
number of samples, as discussed by G. King & L. Zeng
(2001b) and M. Maalouf & M. Siddiqi (2014). The introduc-
tion of weights causes the estimators to become biased as
proved by P. McCullagh & J. Nelder (1989) and in Appendix A
of G. King & L. Zeng (2001b). However, one can correct for
this: we use the maximization algorithm that corrects for bias
and reduces variance using the methods proposed by M. Maa-
louf & M. Siddiqi (2014). Using their approach, we obtain
estimates of β from our training data, and use cross validation
to create our classifier.

We note that the mislabeling of a repeater as a nonrepeater
simply because it was not observed for long enough can
produce serious biases in any supervised learning-type
analysis. This is a caveat that has not been addressed in
previous work (J.-W. Luo et al. 2022; J.-M. Zhu-Ge et al. 2022;
X. Yang et al. 2023). The introduction of the true proportion τ
allows us to account for the uncertainty associated with the
potential mislabeling of repeating sources as nonrepeaters.

3.3. Training and Test Data

Ideally, we would use multiple data sets to study the
statistical performance of the proposed model. However, this is
not possible because we have only one data set at our disposal.
Thus, we instead use cross validation; we create multiple data
sets by repeatedly splitting the available data set into a training
set and a cross-validation set. For each split, we fit the model
on the training data and then classify the cross-validation data
as repeaters or nonrepeaters based on the fitted model. The
classification is done by evaluating the the probability πi in
Equation (4), which returns the probability of belonging to one
of the two possible classes.

To assess the performance of a classifier, it is customary to
use a classification threshold of 50%. More precisely, if the
estimated probability of an FRB being a repeater is greater than
50%, i.e., Pr(Y = 1)� 0.5, then we classify the FRB as a
repeater. Changing the threshold has an effect on the
performance metrics, but the probability itself is not affected.

Instead of a single classifier, our approach yields an
ensemble of classifiers, since every data split will yield a
different set of parameter estimates. The procedure of data
splitting and model fitting is repeated 500 times, which
provides uncertainty quantification for the model’s classifica-
tion accuracy. While more replicates are possible, the results
remain similar due to the small number of repeaters in the
sample. When performing the data splitting, we carefully avoid
situations in which repeated bursts from the same source appear
in both the training and test data sets. In other words,
repetitions from the same FRB source will all be included in
the training set or will all be included in the cross-validation set
at each data split.

The number of confirmed repeater sources in Catalog 1 is
only 18, which is much smaller than the 474 nonrepeaters
(together shown as white regions in Figure 1)—this limits the
number of repeater sources in the test data. Since the release of
Catalog 1, the CHIME/FRB collaboration has published an
additional 25 newly discovered repeaters (the “Gold sample,”
shown as the yellow region in Figure 1 and in CHIME/FRB
Collaboration et al. 2023b). For the purpose of our interpreta-
tion, we refer to these as “real repeaters.”

CHIME/FRB Collaboration et al. (2023b) also include 14
newly discovered repeater candidates (the “Silver sample,”
shown as the gray region in Figure 1), which have a lower
confidence of being repeaters than the Gold sample, but have a
higher confidence than the nonrepeaters. We include the Silver
sample as repeaters in our training and cross-validation splits.
Out of these 39 sources in the Gold and Silver samples, we

exclude a subset of 14, which crossmatch in Catalog 1 and the
repeaters catalog, from training and cross validation. These 14
FRB sources are used as our test set (delimited by the purple
outline in Figure 1). The remaining 25 repeaters and
nonrepeaters are added to the training/cross-validation set.

3.4. Selection of τ

The statistical model that we consider for classification
depends on the parameter τ, which is not directly estimable
from the data, or from theory.
In this paper, we treat τ as an unknown independent quantity

and create a sequence of its possible values. For each value of
τ, we train the proposed logistic regression classifier by
splitting randomly 500 times the training and cross-validation
sets, as described above. Together, the individual classifiers
trained by the random splits form an ensemble of classifiers.
For every value of τ, a different maximum likelihood estimator
is obtained and a different classification for a newly observed
FRB source is generated.
As mentioned previously, the logistic regression model gives a

probability πi of belonging to one of the classes (either repeater
or nonrepeater), but this is not useful when measuring the
performance of the model, as our response, yi, is binary in nature.
So it is necessary to apply a decision threshold—we use a standard
value of 50%. The choice of this threshold is independent of τ or
the imbalance of the data, and it only serves as a decision boundary
to obtain a binary response. The standard value assumes that there
is no preference for repeaters or nonrepeaters, and allows for better
analysis of the performance of the logistic regression model.
When summarizing the performance of the model for each τ,

we use the traditional metrics of accuracy, precision, recall, and

Figure 1. Venn diagram describing our training/validation set and “test” set.
The training/validation set is comprised of the white, yellow, and gray regions,
minus the region delimited by the purple outline. The latter is the “test” set of
14 FRBs and the performance of our model on these is shown in Figure 5.
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F1 score. These metrics are derived using empirical frequencies
computed from the proposed model’s performance on multiple
splits of the training and cross-validation data. These metrics
are defined as follows.

1. Accuracy. The proportion of correct predictions among
all predictions, i.e., the proportion of correctly classified
FRBs as repeaters and nonrepeaters, among all classifica-
tions,

( )accuracy
TP TN

TP TN FP FN
, 11=

+
+ + +

where TP, TN, FP, and FN are, respectively, the number
of true positives, true negatives, false positives, and false
negatives.

2. Precision. The proportion of positive predictions that are
actually correct, i.e., the proportion of FRBs classified as
repeaters that are real repeaters,

( )precision
TP

TP FP
. 12=

+
3. Recall. The proportion of true positives that have been

correctly predicted, i.e., the proportion of real repeaters
that are correctly identified as repeaters,

( )recall
TP

TP FN
. 13=

+
4. F1 score. A measure that combines precision and recall.

The F1 score is the harmonic mean of the two, and can be
interpreted as an optimal number of true positives without
introducing too many false negatives or false positives. It
can also be written as,

( )F score 2
precision recall

precision recall
. 141 =

´
+

The F1 score is particularly useful in cases where the data
set is imbalanced.

After training an ensemble of classifiers17 for every τ, we
analyze the above performance metrics (Section 4.2) and
combine this information with literature estimates to settle on a
single value of τ.

4. Results

4.1. Example Demonstrating Weighted Logistic Regression for
Imbalanced Data Sets

In Figure 2, we compare classifications produced by
traditional logistic regression that does not account for
imbalance in the data (left) to that produced by weighted
logistic regression (right). In this example, and only for ease of
illustration, we use the bandwidth as a predictor and Catalog 1
as the training data. In the right-hand side of Figure 2, we also
show how the logistic curve changes as τ takes the values 0.1,
0.5, and 0.9. For τ = 0.1 the fitted logistic curve (orange line) is
very similar to the fit obtained without any correction. When
τ = 0.5 the logistic fit changes shape, and predicts higher
probability Pr(Y = 1) (i.e., predicts a repeater) for FRBs with
lower bandwidths. When τ = 0.9 we can see that most of the
FRBs will be predicted to be repeaters, which is not surprising
since the information provided by τ is that 90% of all FRB
sources in the Universe are repeaters. Clearly, the choice of τ
has a strong effect on the model. When judging the accuracy of
the model, one must consider the rate of mislabeling a
nonrepeater, which relates with 1 − precision, or mislabeling a
repeater, which relates to 1 − recall. In general, we expect both
type of errors to be nonzero and impossible to simultaneously
optimize (see R. V. Craiu & L. Sun 2008, and references
therein). One must therefore consider the effect of choosing a
value of τ on both types of errors simultaneously.

Figure 2. Example of a logistic classification model using the bandwidth of each FRB as a feature and the complete catalog as training data. The purple and
orange dots represent the Catalog 1 samples, and the y-axis is the probability of belonging to one of the binary classes, where 1.0 is a 100% or the repeater class,
and 0.0 is 0% or the nonrepeater class. As the data have a binary response, the samples are assigned to 0% or 100% depending of the assigned label of repeater or
nonrepeater. Left: The classical logistic model ignores the imbalance in the data, and produces the fit shown as a solid blue line. Based on this model fit, and
assuming a threshold probability of 50% to classify any future data as repeaters, only a few samples would be correctly classified. Right: the weighted logistic
regression uses the rare events approach and an assumed value of τ (Section 3.2), resulting in the fit shown as solid lines (τ = 0.1 in orange, τ = 0.5 in green, and
τ = 0.9 in pink).

17 Example implementation is available at https://github.com/alfa33333/
RE-FRB.
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4.2. Ensemble of Classifiers: Finding a Soft Limit for τ

In Figure 3, we show the performance metrics and their
estimated confidence intervals, as a function of τ, listed in
Section 3 for our ensemble of classifiers. The bold purple line
represents the median, the blue shaded regions represent the
68% confidence intervals, and the orange lines are the 95%
confidence intervals. The most important feature of Figure 3 is
that the range 0.4� τ� 0.6 gives the most reliable model.

Recall from Equation (14) that the F1 score provides an
average of precision and recall and thus can be considered an
overall measure of performance. Similarly, accuracy
(Equation (11)) measures how often the model correctly
predicts the output, regardless of the true value. As illustrated
in the upper left and lower right panels of Figure 3, both
accuracy and F1 score show an optimal range of approximately
0.4� τ� 0.6.

For values lower than τ = 0.4, the accuracy, recall, and F1

score return a lower percentage of correctly classified samples.
Although the precision (upper right panel, Figure 3) is high
for low τ, this is merely a consequence of the majority of the
data being nonrepeaters; the precision (Equation (12)) only
considers the performance as measured on positives (i.e.,
repeaters). Since the majority of the data consist of negatives
(i.e., nonrepeaters), the method is more likely to misclassify a
negative. We also note that precision is insensitive to the

number of repeaters correctly classified. For example, we could
achieve 100% precision by having just one repeater correctly
classified and zero misclassified nonrepeaters.
Recall (lower left panel of Figure 3) shows the ability of our

model to correctly identify repeaters. Ideally we want to
achieve 100% recall; based on Equation (13), achieving 100%
means that every repeater is correctly identified as a repeater.
Our model indicates that a high value of τ is needed for such a
result. Such a high value of τ would imply a belief that almost
all FRBs in the Universe are repeaters.
For values higher than τ = 0.6, the accuracy and F1 score

decline. Although it is possible to correctly classify all
repeaters with τ = 0.8, using τ = 0.6 still correctly classifies
all repeaters in the catalog for some of the test splits. While
τ > 0.6 is possible, we are not comfortable with the implication
of having such a large proportion of repeaters, as we do not
have other external evidence that justifies the decrease in
accuracy and precision from the data.
Based on the overall performance metrics in Figure 3, it

appears that our ensemble of classifiers performs best in the
range 0.4� τ� 0.6. Both C. W. James (2023) and S. Yamasaki
et al. (2023) propose that the fraction of repeaters should be at
least 50%, by modeling the DM with a low repeating
population or correcting the source count evolution, respec-
tively. Combining this lower limit of τ with our range, we are
left with a proportion of repeaters somewhere between 50%

Figure 3. Performance metrics for the ensemble of classifiers as a function of τ. Values on the vertical axis represent the proportion for each metric (i.e.,
Equations (11)–(14)). Accuracy (the proportion of correctly classified FRBs as repeaters and nonrepeaters, among all classifications) is shown in the upper left, and is
maximized for 0.4 � τ � 0.6. Precision (the proportion of FRBs correctly classified as repeaters out of all repeater predictions) is shown in the upper right, and
decreases with increasing τ. Recall (the proportion correctly identified repeaters out of all real repeaters) is shown in the lower left, and increases with increasing τ. F1

score (the average rate between precision and recall) is shown in the lower right, and appears to be maximized and stable in the approximate range 0.4 � τ � 0.6,
similar to the accuracy. Precision and recall appear to be inversely related.
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and 60%. The analysis proposed in this paper is quite robust to
the choice of τ in this range. For brevity, we present the results
from a single value of τ = 0.55 for the remaining analysis. The
results corresponding to τ = 0.5 and 0.6, the lower and upper
limits of the range, are very similar.

4.2.1. Parameter Interpretation

On their original measurement scale, the covariates have
different units and different sample means and sample standard
deviations, as reported in the last two most column of Table 1.
This complicates the interpretation of the regression parameters
and of the importance of each feature. Intuitively, one can see
that if covariates X1 and X2 are equally important in predicting
the outcome, but X1 has a much larger mean than X2, then the
regression coefficient of the former must be smaller than that of
the latter. A similar phenomenon occurs when the values of
feature X1 are more spread out, i.e., have a larger standard
deviation, than those of X2. These challenges in interpreting the
model are eliminated when the covariates are standardized, i.e.,
the values of each feature are realizations of a random variable
with a mean of zero and a variance of one.

To standardize xji, one subtracts the sample mean x̄j and
divides by the sample standard deviation, sj, of that feature, i.e.,

¯
( )x

x x

s
. 15ji

ji j

j

¢ =
-

This transformation turns the features into realizations of a
dimensionless random variable with a mean of zero and a
standard deviation of one. We note that while the classification
accuracy is invariant to linear transformations of the covariates,
standardizing the features allows direct comparison of the
regression coefficients and gives a clear interpretation of 0̂b .
The latter becomes the logit transformation of the probability of
a repeater when all features take their corresponding mean
value (which is zero after standardization).

In Figure 4, we show the ensemble distributions for the
different parameters ˆ

jb when τ = 0.55. In Table 1, we provide
the estimated median for each regression coefficient, computed
from the ensemble distribution, and the sample means and
standard deviations of the data used for standardization. We
emphasize that the coefficient estimates are specific to the
training data we used (Section 2).

From Figure 4 and Table 1, we observe that the biggest
contributors to classification are the bandwidth and the fitburst

width. This analysis of the coefficients agree with previous
empirical observations in the literature, e.g., Z. Pleunis et al.
(2021).
With the data standardized, each regression coefficient can

be interpreted in terms of changes in the probability of a
repeater when the corresponding feature value is one and
the other feature values are fixed at zero. For instance, for
bandwidth, the regression coefficient is β2 = −1.14, implying
that increasing the bandwidth from zero to one results in
decreasing P(Y = 1) from 0.45 to 0.21. Similar calculations can
be done with the other features. When all features are equal to
their mean zero value, the probability of the corresponding
burst belonging to a repeater is P(Y = 1) ≈ 0.45.

4.3. Testing Our Model with the Gold and Silver “Test” Data

We use the test data (i.e., the 14 FRB sources from the Gold
and Silver samples described in Section 3.3) to assess the
performance of the ensemble of classifiers for τ = 0.55. The
results are presented in Figure 5. The y-axis shows the names
provided by the Transient Name Server for each FRB in the test
set, and the x-axis shows the classification probability. If the
classification probability for an FRB is higher than 0.5, then we
classify the FRB as a repeater. Since each FRB is classified
multiple times through the ensemble of classifiers, the results
are summarized by violin plots of the predicted probabilities.
The vertical black lines are the medians of all the prediction
probabilities. We choose to present the median instead of the
mean because the distribution of predicted probabilities is not
symmetric and the mean may be misleading. The distributions
are colored gold and silver, to indicate which FRBs belong to
the Gold and Silver samples, respectively.
Of the 14 samples in our test set, six (four Silver FRBs and

two Gold FRBs) are unambiguously identified as nonrepeaters
because the entire distribution is below the threshold. Two FRBs
remain ambiguous (FRB 20180909A and FRB 20190127B, both
Silver FRBs) due to the distribution being broad and unin-
formative. We found that this result is consistent across three
values for τ ä {0.5, 0.55, 0.6}. Notably, five of the six samples
identified as repeaters are from the Gold sample.
The remaining FRBs in Figure 5 are predicted to be

repeaters, with only the tail of the distributions crossing the
threshold to the nonrepeater region. Note that one could find
several ways to make use of the distribution of classification
probabilities. For instance, in the case of FRB 20190609C, all
the ensemble models correctly predict it to be a repeater and the
median of the classification probabilities value is significantly
higher than 0.5, which strongly recommends it for future
monitoring. In the case of FRB 20190127B (sixth from the top
in Figure 5) the set of ensemble models that predicts it as a
repeater is barely outnumbered by the complement set. An
observer who is interested in finding new repeater signals might
consider the ambiguity in the evidence and choose to continue
monitoring this FRB.
At first glance, Figure 5 shows that six out of 14 FRB

sources in the test set were correctly labeled as repeaters. A
quick and naive interpretation of this result is that our model
does no better than 50% chance at predicting repeaters.
However, six out of 14 repeaters is merely a result of the
50% threshold for classification. Had a different threshold been
chosen, then more or fewer FRBs would be classified as
repeaters. Moreover, the classification is not random between
the Gold and Silver samples. Almost all of the Gold sample are

Table 1
Parameter Estimates, and Sample Means and Sample Standard Deviations

Computed for Each Feature

Parameter Estimates ( ˆ
jb ) x̄j sj

Intercept( ˆ
0b ) −0.20 L L

bc_width( ˆ
1b ) 0.11 9.759 × 10−3 s 14.376 × 10−3 s

Bandwidth( ˆ
2b ) −1.14 283.052 MHz 110.572 MHz

sub_struct( ˆ
3b ) 0.27 1.371 × 10−1 4.879 × 10−1

width_fitb( ˆ
4b ) 0.75 1.880 × 10−3 s 2.319 × 10−3 s

peak_freq( ˆ
5b ) 0.61 512.520 MHz 110.531 MHz

Note. The second column shows the estimate of the median of each
parameter’s ensemble distribution. The last two columns show the sample
mean and sample standard deviations of the data (i.e., the values used to
standardize each feature).
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identified as repeaters, and most of the Silver sample are not,
which implies that information from the covariates is informing
our model. Furthermore, the training data are imbalanced to
nonrepeaters, so if the classifiers give an FRB source in the test
set a high probability of being a repeater, then that FRB must
be quite different from the nonrepeater set. The precision in
Figure 3 gives another measure of this idea—approximately
20% of nonrepeaters are misclassified at our selected τ. We
include in the Appendix additional results for τ = 0.1
(Figure 9) and τ = 0.9 (Figure 10). These two plots illustrate
the influence of imposing extreme values for the fraction of
repeaters in the population. For instance, when τ is close to the
lower bound, the vast majority of observed FRBs are assumed
to be one-offs, and this influences the classification results.

In Figures 6–8, we strengthen our case that our classifier is
doing better than chance by showing the dynamic spectra, also
called “waterfall plots,” for each FRB in the test set. We
present two plots for each FRB, at the left the intensity data and
at the right the intensity data with an overlay of the fitburst
model for visibility purposes. FRBs classified as repeaters are
shown in Figure 6, nonrepeaters in Figure 7, and ambiguous
FRBs in Figure 8. In these waterfall plots, we see the typical
behavior of FRB morphology for repeaters and nonrepeaters:
those with broad widths are classified as repeaters and those
with a single short burst are classified as nonrepeaters.
Each of the repeating sources of FRBs within the Gold and

Silver samples have a contamination rate of chance coincidence
(Rcc; CHIME/FRB Collaboration et al. 2023b). The latter is

Figure 4. Ensemble distributions for the different βi parameters for the selected fiducial value of τ = 0.55. The orange lines correspond to the 16th percentile, median,
and 84th percentile.
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interpreted as a measure of uncertainty. A higher uncertainty is
represented by a higher Rcc value, and is linked with the
probability of being observed by chance in the same region as
another source. The Gold sample includes sources with
Rcc < 0.5 while the Silver sample includes sources within the
range 0.5� Rcc < 5. This additional information provides a
different perspective on our results. From the Gold sample, our
method is able to correctly identify five out of seven sources as
repeaters, yielding an accuracy on confirmed repeaters higher
than 70%, which is more in line with the results generated via
cross validation. The two FRBs from the Gold sample that were
misclassified, FRB 20180910A and FRB 20190201A, can be
considered atypical cases or outliers in their morphological
features. While FRB 20180910A has the largest contamination
rate from the Gold sample with Rcc = 0.43, FRB 20190201A is
similar to FRB 20200120E, which shows unusual larger
bandwidths and narrower widths (M. Bhardwaj et al. 2021).

5. Conclusions and Future Work

The main aim of this paper has been to develop methodology
that assists in the classification of newly observed FRBs as
repeaters or nonrepeaters. Repeating FRBs are of scientific
interest and any such classification has the potential to increase
the number of confirmed repeating FRBs at a more rapid pace.
For example, by identifying repeater candidates from the first
observation with a certain repeater probability, one could rank
potential repeating FRBs for follow-up. Alternatively, repeater
candidates identified through our method may improve the
efficiency of follow-up searches for repeat bursts in archi-
val data.

The method proposed here is based on the widely used
statistical model for studying the dependence of binary
response variables on independent variables, known as logistic
regression. Our logistic regression model is modified to
account for the marked imbalance in the data (i.e., many fewer
repeaters than nonrepeaters). The adjustment of the method
relies on a tuning parameter that represents the proportion of
repeaters, τ, in the whole population of FRBs.
Given the cross-disciplinary nature of the methodology, we

have prepared takeaways according to the main interest of the
audience.
Astronomy takeaways.

1. One of the first takeaways is efficiency. Compared with a
deep-learning approach or other machine learning
classification techniques, logistic regression requires a
smaller volume of data.

2. The performance of the model is promising for finding
potential repeaters. For the Gold sample, the model
correctly identifies 70% of the test set FRBs, not
previously used for training, as repeaters.

3. While logistic regression is well established in other fields,
its application in astronomy, particularly for rare events, is
relatively novel. We have introduced this approach to the
astronomical literature and hope it can be successfully
applied to other astronomy data sets that have binary
responses. Moreover, we emphasize the introduction of a
parameter that could help interpret the true population
fraction in any study containing an imbalanced data set. We
encourage the application of our method to other data sets
where a similar pattern is present.

Figure 5. Violin plots of the classification probability for the ensemble of classifiers at τ = 0.55 for the 14 unidentified repeater sources in Catalog 1. The nonrepeater
to repeater threshold of 50% is shown as a gray vertical line; everything to the right of the gray line is classified as a repeater. The gold and silver colors correspond to
the Gold and Silver samples, respectively. Each of the violin plots indicates where the majority of the distribution lies, and the dark lines inside the boxes are the
medians of the distributions. The median values are enough to identify six out of 14 as repeaters across the different values of τ. The FRB 20180909A and
FRB 20190127B classification distributions are stretched so thinly across the threshold that they become ambiguous to classify.
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Statistical takeaways.

1. The FRB data present interesting challenges for the
statistician. The uncertain labeling of one-off FRBs is an
open problem. One cannot be sure that a one-off source
will never repeat in the future. This uncertainty in
labeling is an unusual issue in statistical applications of
logistic regression. This implies that the model we
propose should not be interpreted as a classifier. Rather,
an astronomer interested in repeating FRBs will want to
use our model to select and prioritize monitoring of one-
off sources that are more likely to repeat. In other
applications, where both cases and controls are unam-
biguously labeled, one can use a model like ours for
classification.

2. The imbalance of the sample can be accounted for, with
caveats. The number of one-off FRBs vastly outnumbers
the number of repeating FRBs in this application. This
issue of imbalanced data is not unusual in statistical
applications of logistic regression, and we have refer-
enced works that tackle this problem. However, what is
unusual in the application of FRBs is that we do not know

the true, underlying proportion of repeating FRBs in the
population. We have addressed this issue by allowing the
proportion of repeaters in the population of FRBs, τ, to
take on various values, and by assessing performance
metrics to settle on a range of probable values. We found
values of τ in the range 0.5–0.6 to perform well, and
noted that the results do not change significantly within
this range. Thus, we presented the analysis when
τ = 0.55. Our numerical experiments suggest that the
model is most accurate when τ is around 60%. However,
we hesitate to conclude that this qualifies as strong
statistical evidence in favor of this being the true
proportion, since the tuning parameter is not estimable
from the data.

3. The dependence between observations produced by a
repeating source stills needs to be taken into account. A
one-off source generates a single burst while a repeater
generates one to several subsequent bursts. In this paper,
the information from multiple bursts is summarized by
the mean. This strategy does not incorporate all the
information contained in multiple bursts. Moreover, some
repeating FRBs may have burst only twice, while others

Figure 6. Dynamic spectra or waterfall plots for the six FRBs from the test set, from CHIME/FRB Collaboration et al. (2021), which are classified as repeaters by the
ensemble classifier (i.e., FRB 20190110C, FRB 20190113A, FRB 20190226B, FRB 20190308B, FRB 20190430C, and FRB 20190609C from Figure 5). We present
two plots for each sample: at the left is the intensity data and at the right is an overlay of the fitburst model to enhance the visual shape of the FRB. These bursts show
evidence of being a repeater: wider widths, downward drifting, or narrow emitting bandwidths. This is in contrast with bursts from Figures 7 and 8, which do not show
repeater characteristics.
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may have burst tens or even hundreds of times. Thus, some
repeaters have more data available, but this is not
considered in the training. In other words, the amount of
information provided by each repeater is not the same, a
fact that the current model does not take into account.
Moreover, subsequent bursts cannot be treated as indepen-
dent observations since they have single origin. We are
currently exploring the use of a mixed effects weighted
logistic regression model that will automatically integrate

the information from all bursts that have the same source.
The results will be communicated in a future paper.
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Appendix

Figures 9 and 10 illustrate the case of edge or extreme values
for the fraction of repeaters in the population.

Figure 9. Violin plots of the classification probability for the ensemble of classifiers at τ = 0.1 for the 14 unidentified repeater sources in Catalog 1, similar to Figure 5.
At this value of τ everything is classified as a nonrepeater.
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