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Abstract

Studying transient phenomena, such as individual pulses from pulsars, has garnered considerable attention in the
era of astronomical big data. Of specific interest to this study are rotating radio transients (RRATS), nulling, and
intermittent pulsars. This study introduces a new algorithm named LuNfit, tailored to correct the selection biases
originating from the telescope and detection pipelines. Ultimately LuNfit estimates the intrinsic luminosity
distribution and nulling fraction of the single pulses emitted by pulsars. LuNfit relies on Bayesian nested sampling
so that the parameter space can be fully explored. Bayesian nested sampling also provides the additional benefit of
simplifying model comparisons through the Bayes ratio. The robustness of LuNfit is shown through simulations
and applying LuNfit onto pulsars with known nulling fractions. LuNfit is then applied to three RRATs, JOO12
45431, J1538+41523, and J23554-1523, extracting their intrinsic luminosity distribution and burst rates. We find
that their nulling fractions are 0.4(2), 0.749(5), and 0.995(2), respectively. We further find that a log-normal
distribution likely describes the single pulse luminosity distribution of J0012+4-5431 and J1538+-1523, while the
Bayes ratio for J2355+1523 slightly favors an exponential distribution. We show the conventional method of
correcting selection effects by “scaling up” the missed fraction of radio transients can be unreliable when the mean
luminosity of the source is faint relative to the telescope sensitivity. Finally, we discuss the limitations of the
current implementation of LulNfit while also delving into potential enhancements that would enable LuNfit to be
applied to sources with complex pulse morphologies.

Unified Astronomy Thesaurus concepts: Radio pulsars (1353); Radio transient sources (2008); Neutron stars
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(1108); Compact objects (288)

1. Introduction

Neutron stars result from the remnants of massive stars after
they have undergone core-collapse supernova. Rapid rotation
of neutron stars likely emerges due to angular momentum
conservation following stellar collapse. The rapid rotation
combined with beamed radiation creates a lighthouse effect and
results in pulsed signals at observatories on Earth. The
observed emission exhibits a frequency-dependent delay due
to cold-plasma dispersion, imparted onto the radio signal as it
traverses the interstellar medium. The dispersion is dependent
on the integrated line-of-sight electron density and is inversely
proportional to the square of the observing frequency; i.e.,
At = sDMpcem >,  ((1/GHz)? — (v/GHz)?);
(Lorimer & Kramer 2004), where At is the time delay, and
vy and v, are the upper and lower observing frequencies. DM is

Original content from this work may be used under the terms

BY of the Creative Commons Attribution 4.0 licence. Any further
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of the work, journal citation and DOI.

the dispersion measure. The conventional technique to detect
pulsars is to first correct for the dispersion and then fold the
observation on the pulsar period to build signal-to-noise ratio
(S/N). Therefore, pulsar detection sensitivity can be signifi-
cantly boosted by longer integration times. Pulsar survey
strategies must strike a balance between integration time and
sky coverage when using conventional single-dish radio
telescopes (Manchester et al. 2001; Cordes et al. 2006; Stovall
et al. 2014). Often, but not always, this leads to surveys
focusing on the Galactic plane. A counterexample is the Green
Bank North Celestial Cap survey, which surveyed the whole
Northern Hemisphere (Stovall et al. 2014). Because of the large
sky coverage, the survey only dwelled for 120 s per pointing.
The contemporary pulsar astronomy landscape operates in a
distinctly different parameter space, such as the Canadian
Hydrogen Intensity Mapping Experiment (CHIME) and the
Low-Frequency Array (LOFAR); (CHIME/FRB Collaboration
et al. 2018; Sanidas et al. 2019). Their wide field of view
allows for simultaneous significant sky coverage and long
dwell times. With these new capabilities, intermittent pulsars,
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nulling pulsars, and rotating radio transients (RRATSs) become
easier to find and characterize.

It has long been known that some pulsars do not emit on
every rotation (Backer 1970). This phenomenon is called
nulling, and up until recently the population of known nulling
pulsars has been small compared to the total pulsar population,
likely due to the aforementioned survey methods (Konar &
Deka 2019). With access to instruments with wide fields of
view, this may be changing. For example, Ng et al. (2020)
showed that even long-known pulsars thought to be persistent
emitters could exhibit nulling behavior. It is important to
understand the nulling phenomenon as this can lead to better
models for pulsar emission mechanisms (van Leeuwen et al.
2003). On the extreme end of the nulling pulsar spectrum are
RRATS, highly intermittent pulsars that can only be detected
via their single pulses. As a large portion of the pulsar
population likely consists of RRATs (McLaughlin et al. 2006;
Keane & McLaughlin 2011), understanding their intrinsic
characteristics is vital to understanding the pulsar population.
However, RRATSs cannot be folded to increase S/N and thus
may require long observations to detect appreciable amounts of
single pulses.

A critical aspect of population analysis lacking in the current
literature is probing the intrinsic luminosity function and burst
rate of highly intermittent sources using only the detected
pulsar single pulses. Many studies of RRATSs only describe an
observed burst rate (e.g., Karako-Argaman et al. 2015; Deneva
et al. 2016; Good et al. 2021; Dong et al. 2023) rather than
correcting for selection effects to probe the intrinsic values.
There have been attempts to probe the intrinsic parameters for
nulling pulsars (Ritchings 1976; Kaplan et al. 2018; Anumar-
lapudi et al. 2023) and also another similar class of
astrophysical phenomena, repeating fast radio bursts (FRBs),
luminous extragalactic radio bursts with similar burst char-
acteristics to RRATs (Li et al. 2021). The most established
method described in Ritchings (1976) relies on forming
histogram bins and calculating A = ON — NF x OFF for each
histogram bin, where ON and OFF are the histogram bins of
the integrated intensities during the on-pulse window and off-
pulse window, respectively, and NF is the nulling fraction. One
would then minimize |A| by changing NF to find the preferred
nulling fraction. However, this method and the Gaussian
mixture model in Kaplan et al. (2018) operate on the folded
time series of the pulsar observations and necessarily requires
two conditions: the first of these conditions is a period and a
correctly identified pulse arrival phase. This is not always
possible with RRATs due to their extreme sporadicity (i.e.,
Dong et al. 2023). The second requirement is recording the
full-time series for the observation, even during times of no
emission. This is problematic for some contemporary com-
mensal instruments such as CHIME/FRB (CHIME/FRB
Collaboration et al. 2018), which only save data segments
around detected single pulses. While the method described in
Li et al. (2021) looks at only single pulses, they account for the
missed pulses by “scaling up” by the measure detection
fraction. However, we show in Section 5.1 that this method can
be unreliable, especially when the source has emitted many
bursts below the observing telescope detection threshold. In an
attempt to avoid the limitations of earlier works, we implement
a new method, Luminosity and N fit (LuNfit), that utilizes
Bayesian inference using the nested sampling algorithm
(Skilling 2004) to constrain the intrinsic single-pulse

Dong et al.
Table 1
Properties of the CHIME/Pulsar System
CHIME /Pulsar
Receiver noise temperature ~50K
Frequency range 400-800 MHz

Number of beams
Beam width (FWHM)

10 (Tracking)
30°(400 MHz)-15"(800 MHz)

Time resolution 327.68 us
Search frequency resolution 390.625 kHz
Coherent dedispersion Yes

luminosity distribution and the burst rates simultaneously.
LuNfit is designed to remove any systematic biases in the
single-pulse luminosity distribution and burst rate by empiri-
cally measuring the selection effects of the telescope and
detection pipeline.

This study is presented in the following way. Section 2
describes the CHIME instrument and the implementation of
LuNfit. We discuss the likelihood and derivation of LuNfit.
Section 2.1 describes the underlying luminosity distributions
used. Section 2.2 details the priors used in LuNfit. Section 2.3
addresses the issue of discrete parameters. Section 2.4 details
the CHIME /Pulsar backend, the detection of pulses, and how
single-pulse characteristics are retrieved following the detection
of pulses. Section 2.5 details the process of injecting simulated
pulses into the CHIME/Pulsar detection pipeline to find the
selection biases of the telescope. Section 3 details the
simulations we performed to show the efficacy and robustness
of LuNfit. Section 3.1 compares LuNfit results with the known
nulling fractions of two pulsars, B1905+439 and J2044+4-4614.
Section 3.2 describes the conversion to flux units. Section 4
applies LuNfit to three RRATs, JO012+54, J1528+-2345, and
J23554-1523. We present their intrinsic luminosity distribu-
tions and burst rates. Finally, Section 5 compares LuNfit and
conventional methods of correcting selection biases and
discusses LuNfit’s potential future applications to pulsars,
RRATS, and FRBs.

2. Methods

CHIME is a commensal transit radio telescope situated in
British Columbia, Canada. It comprises three backend instru-
ments: CHIME/cosmology, CHIME/FRB, and CHIME/
Pulsar (CHIME/FRB Collaboration et al. 2018; CHIME/
Pulsar Collaboration et al. 2021; CHIME Collaboration et al.
2022). Our study only utilizes the CHIME/Pulsar backend,
which processes up to 10 simultaneous steerable tracking
beams as sources transit the CHIME sky. The properties of
CHIME /Pulsar are provided in Table 1. The transit nature of
the CHIME telescope allows it to cover the whole northern sky
every day, and while each observation is only around
~10 minutes CHIME/Pulsar can achieve daily cadence on
astrophysical sources. Every day CHIME/Pulsar can observe
~500 individual sources. For this study, CHIME/Pulsar
collects high-time resolution spectra in the form of Sigproc'’
style filterbank data. CHIME’s sensitivity changes relative to
the zenith angle of the source; therefore, to maintain
consistency within each observation, we use only the data in
which pulses from the nominal pulsar position would be visible
through the entire frequency range.

13 https: / /sigproc.sourceforge.net/
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For this study, we are focused on RRATSs, which are only
detectable via single pulses. A Bernoulli process is a sequence
of binary random variables, i.e., they take only values of O or 1.
Each pulse from an RRAT can be described as one of these
binary variables where 0 represents nondetection and 1
represents detection. While RRAT pulses have not been
modeled as Bernoulli process previously, RRATSs are often
assumed to follow a Poisson distribution, the extreme case for
the Bernoulli process (e.g., Chen et al. 2022; McKenna et al.
2024). During any observation of an RRAT, any radio
telescope will detect only a portion of the emitted pulses due
to limited sensitivity. This is called the “selection” of the
telescope. Therefore, assuming the selection effects of the
telescope are understood, we forward model the intrinsic
luminosity function of the RRAT. For N pulses emitted by an
RRAT, the likelihood is a series of Bernoulli trials for each
pulse emitted. This can be written as

N
LIV, ¢y éy) o [T ¢ 1 = g~ ()
i=1

where L is the likelihood, i is the pulse number, N is the total
(but unknown) number of pulses emitted by the RRAT, ¢, is
the probability of detecting pulse i, and d = 1 if a detection was
made, or d =0 otherwise. Removing the terms in the product
that go to one (e.g., when d=1, then the terms
(1 — ¢)'=1 = 1), we can rewrite this as

N

L(N, ¢;...0y) x (H ¢i)( I1
i—1

Jj=n+1

a- ¢,-)) ¥

where n is the number of detected pulses. The first product
results from all the pulses detected by the telescope, and the
second product results from all those not detected by the
telescope. In practice, ¢; depends on the pulse’s brightness and
the intrinsic luminosity function of the RRAT. Therefore,

O,(Siaas @) = P(AetS;a) [P (S:aalSr, ) P(Stl)dSr (3)

where S; 4¢¢ 1s the detected brightness of pulse i. S is the true
intrinsic brightness as emitted by the RRAT. We emphasize
the difference between S7 and Sg4.,, Where Sqe is the detected
brightness and comes with the errors due to the stochastic
background noise of the telescope. Sy is the intrinsic
brightness of the pulse emitted from the source without any
noise applied to it. The latter, even if inherently low, can be
amplified by random noise fluctuations, rendering it detect-
able and vice versa. Expressed differently, Sqeq = St + S5,
where S, is the stochastic noise of the data. Depending on the
chosen S; 4t cutoff, this effect can be non-negligible. Figure 2
shows that this effect is most apparent at the turnoff locations,
near detection fractions of 0 and 1. P(det|S; 4¢r) encodes all the
selection biases of the telescope and detection pipeline.
P(S7la) is the probability density of the intrinsic luminosity
distribution of the RRAT, where « is a vector containing the
parameters of the luminosity model; that is, o = [u, o] or
a = [k] for a log-normal or exponential distribution, respec-
tively. This is discussed in further in Section 2.1.
P (S; get| ST, 04) designates the Gaussian detection error with
o4 being the known and fixed error. Error o, is measured
empirically by performing injections, as discussed in

Dong et al.

Section 2.5. Due to Sr being an unmeasurable parameter,
we marginalize over it. A computational efficiency boost is
achieved by realizing that P(S; 4e|S7, 04) is a Gaussian and
P(SaedSts 04) = P(Saer — S710, 0y), allowing the right-hand
integral of Equation (3) to be written as a convolution.

For pulses that are not detected, we assume that the
probability of nondetection is the same for every pulse. That is,

1= ¢a)=1— f P(det|S7) P(Srla)dSr. )

This assumption must be made as there is no way to know the
brightness of a pulse that is not detected. Finally, as the pulses
are assumed to be independent, the order does not matter. The
independence assumption does not consider refractive scintilla-
tion or the clustering of RRAT pulses. Refractive scintillation
can change the overall shape of P(S7lae) and occurs on
timescales of weeks (Narayan 1992). Therefore, when applying
LuNfit to data that span longer than a few weeks, we point out
that the fitted luminosity function will be the intrinsic
luminosity function modulated by refractive scintillation.
However, carefully accounting for the effects of refractive
scintillation with different classes of luminosity functions is out
of the scope of this study. We note that in this study, the
timescales for observations in Section 4 span months, and
therefore the luminosity function that has been fit is likely
modulated by refractive scintillation. We do not make any
attempts to remove these effects. Despite this, as seen in
Section 4, it is unlikely that the shape of the luminosity
function is much different from a log-normal or exponential
distribution. Any clustering of RRAT pulses should not cause a
problem for LuNfit as there is no dependence on each pulse’s
arrival time. We assume that all pulses from each cluster
conform to a global luminosity distribution and do not consider
the case where each cluster possesses an independent
luminosity distribution. Thus, the likelihood is multiplied by

(N) and becomes
n
N N—n
L(a, Nin, sdet):( )(1 — [P(detiSp)P(Srla)dSy )
n

x [T P(detlS;ae) [P(S;aelSt. 00) P(Srl)dSr.

i=1
&)

For this analysis, we take a Bayesian approach utilizing
nested sampling (Skilling 2004) through the dynesty
package (Speagle 2020).'"* Bayesian nested sampling is a
method that breaks up the posterior into many nested “slices,”
assigns weights and volumes to each slice, and recombines
them again to form the posterior and evidence. It is a distinct
way to approach Bayesian analysis compared to Markov Chain
Monte Carlo and possesses multiple benefits. For example,
nested sampling can sample the whole parameter space and
avoid problems with multimodal distributions. By extension,
obtaining the model evidence (marginal likelihood) for model
comparisons through the Bayes ratio is trivial. Both these
features are crucial for LuNfit.

We use the detected signal-to-noise ratio (S/N) for S; 4er. The
strict definitions are given in Section 2.4. Nevertheless, other

14 https://dynesty.readthedocs.io /en/stable/


https://dynesty.readthedocs.io/en/stable/

THE ASTROPHYSICAL JOURNAL, 971:97 (18pp), 2024 August 10

Table 2
Prior Types and Parameters
Parameter Prior Type )2 D2
I Gaussian 0 4
o Inverse gamma 1.938 1
k Inverse gamma 1 1
N Uniform n Nrot = (Tops/period)

brightness metrics, such as detected flux density or fluence, can
be employed instead. Details of changing to flux density units
are given in Section 3.2.

2.1. Underlying Luminosity Distributions

One caveat in this formulation is the luminosity distribution
chosen to describe the detected single pulses, where choosing
the incorrect model can significantly alter the luminosity and
nulling characteristics of the source in question. However, as
we employ a Bayesian nested sampling approach, we use the
Bayes ratio to differentiate between different models. In
Section 3, we demonstrate with simulations that the Bayes
ratio is robust in general. For this reason, we have selected two
models to describe pulsar emission characteristics. The first
model is the log-normal distribution parameterized by the
location, wu, and scale, o, described by

P(Srlp, o) =

_(nSy — py ) ©

1
— ex
SroN27m P ( 202

The second model is the exponential distribution parameter-
ized by k, given by:

P(S7lk) = k exp(—kS). @)

We chose these two models because they have demonstrated
their ability to explain various neutron star single-pulse emission
phenomena, such as RRAT pulses (Burke-Spolaor et al. 2011;
Meyers et al. 2018, 2019; Mickaliger et al. 2018; Good et al.
2021; Dong et al. 2023), giant pulses (Karuppusamy et al. 2010;
Bera & Chengalur 2019; McKee et al. 2019), and regular single
pulses (Burke-Spolaor et al. 2012; Liu et al. 2015; Bilous et al.
2022). Repeating FRBs have shown double-peaked Gaussian
distributions that could also be considered in future studies
(Li et al. 2021) .

2.2. Priors

We assign general priors for both the luminosity function
parameters and the number of pulses. These priors are given in
Table 2. Unlike Markov Chain Monte Carlo methods that do
not necessarily require normalized priors, we need the Bayes
ratio for model comparisons and thus need robust evidence
estimates. The priors are chosen according to expected
behavior. However, they do not restrict unexpected behavior.
To achieve this, all priors do not have strict limits unless those
limits are unphysical, such as in the case of N. All values on the
priors have been chosen based on simulations of pulsars for
CHIME, where the underlying unit is S/N. Users of LuNfit
should adjust these values if they are using flux, fluence, or
other brightness metrics. For u, we choose a Gaussian prior

Dong et al.
described by the following equation
1 (1 —py)?
P(i) = —==exp| ——— ®)
DaN2T 2])22

such that the prior contains ~68% of the probability mass
between —4 and 4. This ensures little bias toward particularly faint
or bright pulsars. Note that 1 has units of In(S/N), such that 4
corresponds to S/N=20.02 and 4 corresponds to S/N ~ 54.60.
Therefore, we allow a wide range of median values. If the user
knows that the pulsar of interest is particularly bright/faint relative
to the telescope sensitivity, the prior on p should be adjusted to
reflect that prior knowledge.

For o and k we choose an inverse gamma distribution as the
prior. They are described by

Py
P>
P =
@ =10

These priors ensure support for o and k across the viable
parameter range between 0 and co. However, we choose p; and
P2 such that for 0 ~90% of the probability mass is between 0
and 2, and for k ~90% of the probability mass is between 0 and
10. The ranges represent the most likely parameter space for
detectable pulsars. Since o is unitless, we believe that the priors
chosen for ¢ should be near universal for all pulsars. We note
that the prior on o did not need to be altered in any set of
simulated parameters. Although k is also unitless, k determines
the mean of an exponential distribution. Like u, the chosen
prior for k can differ if the pulsar is particularly bright/faint
relative to the telescope sensitivity.

The prior for N is determined by the number of detections
made and the amount of time we have observed the source. We
assign a uniform distribution between n and Ny = |Tops/P]
where | | is the floor function, Ty, is the amount of observation
time, and P is the pulsar period. If P is unknown, we set
Nrot = |‘Tobs/1 mSJ .

1/ exp(p, /). )

2.3. Discrete N

Discrete parameters are nontrivial to implement in Bayesian
nested sampling. As N is necessarily discrete, we implement a
pragmatic approach approximating its discreteness. Dynesty
draws samples from the inverse cumulative distribution
function (CDF). Therefore, to ensure discrete values of N are
drawn, we use the scipy.stats.randint.ppf func-
tion."> This applies the following CDF:

LNJ—n—I—l.

ot — 1

CDF = (10)
While this implementation may cause errors if » and N are
O(1), in the case of this study, both n and N and their
associated errors are much greater than 1. Therefore, we do not
expect significant effects on the inference of N.

2.4. CHIME and Detection of Pulses

Here, we describe how we obtain ;4 for each of the
detected pulses. To identify single pulses from known RRATS

15 hetps: //docs.scipy.org/doc/scipy /reference /generated /scipy.stats.
randint.html
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and pulsars, we first search the CHIME /Pulsar filterbank data
using the CHIME /Pulsar Single-pulse PIPEline (CHIPSPIPE;
Dong et al. 2023). Once we detect a pulse, we extract 2 s of
data around the time of arrival (TOA) and downsample it by a
factor of 3, achieving a time resolution of approximately 1 ms.
Next, we mask the channels contaminated by radio frequency
interference (RFI), dedisperse the data to the nominal DM of
the pulsar, and average the data in frequency, producing a
single time series per pulse. To remove the underlying baseline,
we remove the pulse from the data and fit polynomials up to
10th order. For each fit, we calculate a reduced x> value and
accept the fit where the reduced x? is closest to 1. This process
is important as the CHIME/Pulsar baseline can be highly
variable. Once the baseline is fit, we subtract it from the
frequency collapsed time series, and the remaining background
noise is described by the standard deviation of X,,, the baseline-
subtracted, pulse removed time series (00ise)- TO determine the
amplitude of the pulse, we subtract the fitted baseline from the
original 2s chunk of data. Then, we perform a maximum
likelihood fit of a Gaussian pulse given by the equation:

1(X_Xloc)2
FX)=Aexp| ———— |+ B
0 p( 2 w2 )

an
where X, represents the location of the Gaussian peak, X is the
frequency collapsed time series, A is the peak amplitude, W is
the Gaussian width, and B accounts for any remaining DC
offset in the time series. Throughout our study, unless
otherwise specified, we use S/N =S4, = Ui_. We perform
the Gaussian pulse fit on each pulse detectedogy CHIPSPIPE.
After fitting, we discard all S¢er < 2 to ensure that every pulse
is a good fit to the Gaussian. This fiducial cutoff is also
reflected in the selection effects that are measured.

2.5. Injections

In this section, we describe the process of obtaining
P(detlS; get), P(det|Sy), and P(S; 4etSr. 04), with the primary
goal of empirically determining the retrieval probability (or
detection fraction) at different Sy and S; 4. These values are
obtained empirically since the complexity of CHIME /Pulsar
and CHIPSPIPE makes it impossible to derive them analyti-
cally. We inject simulated Gaussian pulses into real CHIME/
Pulsar data. The simulated pulses are broadband with flat
spectral indices and widths equal to the mean of the observed
widths of the source in question. CHIPSPIPE is not sensitive to
width changes for regular slow pulsars or RRATS, so injecting
with one width per pulsar is sufficient. Figure 1 shows the
effects of width on pulse retrieval for CHIPSPIPE. We find that
as long as most pulse widths remain above 10 ms then the
width effect of CHIPSPIPE is minimal. Discussions of
situations where one must include width effects in the
likelihood are provided in more detail in Section 5.3. Since
there are hundreds of hours of CHIME /Pulsar observations for
each source spread across hundreds of observations, we spread
out the injections over multiple observations to perform about
20,000 injections per pulsar. Spreading the injections across
multiple observation epochs allows for an accurate description
of day-to-day RFI variations.

For a given injection we find the amplitude of the injected
pulse in the following way. We subtract the baseline by fitting a
polynomial around each injection TOA, and we measure o,jse
in the same way that is described in Section 2.4. One can only
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Figure 1. The width effects of CHIPSPIPE. The plot shows the probability of
retrieval for different Sy, at varying widths. For regular slow pulsars, the
Gaussian widths are generally greater than 10 ms. Thus, they are not affected
much by CHIPSPIPE selection effects. For sources that exhibit high levels of
pulse-to-pulse width variability, one needs to model the width along with Sy
in LuNfit. For the current iteration of LuNfit, we only chose pulsars with
Gaussian widths larger than 5 ms to avoid the sensitivity drop-off.

control S7 and not Sy, when injecting. Thus, we inject the
desired S7 based on the .. For each Sz, we inject multiple
copies at different TOAs in different observation files. The
injected “observations” are saved and processed using the same
pipelines for real pulsar data. An example of the recovery rate
is shown in Figure 2, and binomial errors are assumed for each

#), where p is the measured recovery

data point
fraction and m is the total number of injections at a specific St.
The low Sz values observed here are due to a matter of S/N
definition, and Figure 3 illustrates the conversion between
CHIPSPIPE/PRESTO detection significance and S7.

We assume that P (S; et|S7, 04) 1s Gaussian, and as Sz is a
controlled parameter, o, is the only unknown. To measure o,
we fit each injected pulse as described in Section 2.4. Therefore
for each group of injected Sy we obtain a group of detected
Si.det- We then take the standard deviation of the retrieved S; get
for each of the three brightest values of S7 to use for o,. Since
P (S; detlST, 04) is dominated by the stochastic noise in the data,
we assume o, is constant across all injected S7.

Two disparate methods are provided to measure P (det|S; ger)-
The first approach involves measuring S; 4. directly from the
injected “observations.” For each injected pulse, we measure
Si.det by the method outlined in Section 2.4. We bin them and
calculate the recovery fraction at each bin by comparing them
with the detected injections. This approach is the most accurate
but may not be feasible for systems like CHIME/FRB, where
one cannot go back through the data stream to calculate Sy, for
nondetections. However, we injected into filterbank data, and
even nondetections can be fitted as we know the data segment
where the injections were placed. This is shown by red circles
in the right panel of Figure 2.

In cases where the first approach is not feasible, a second
approach is provided, where one can forward model based on
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P (S; 4et|ST, 04) and P (det|Sr). It is found that for CHIPSPIPE,
P (det|S; 4e¢) can be well fit by a piecewise nth-order polynomial

0 Sa < Sa0
P(det|Saet) = 3¢y + c1x + c2x22...+cnx,;Z Sa0 < Sy < Sa
1 Sa > Sai
(12)

where S, is determined by when P (det|Sg) first reaches 0 and
S41 1s when P (det|Sge,) first reaches 1, enforcing the function to
be continuous

P@etSy) = [PdetiSu) P(SuclSdSee: (13)

Equation (13) shows the relationship between the measured
probabilities, P(det|S7), and the derived property P (det|Sqe).

Table 3

Table of Results for JO012+5431, J1538+-2345, and J2355+1523
Pulsar JOO12+5431 J1538+4-2345 J2355+1523
No. of detections 194 6272 453
n —0.8(2) 1.48(3) 0.13)
o 0.62(5) 1.01(2) 0.8(1)
Niogn 88,000(36,000) 9400(200) 2300(1900)
k 2.1(1) 0.141(2) 0.62(3)
Nexp 39,030(8700) 8910(70) 2010(160)
Oflux 0.62(5) 1.01(2) 0.8(1)
kfux 51(5) 4.31(6) 16(1)
Observation time (s) 442,410 129,196 352,933
Period (s) 3.025 3.449 0.913
Nulling fraction 0.4(2) 0.749(5) 0.995(3)
InZ, — InZey, 0.7(3) 299.3(4) —0.6(5)

Note. While both exponential and log-normal fit parameters are provided, two
of the three RRATSs favor the log-normal model. Whereas J0012+5431 only
weakly favors the log-normal distribution, J1538+4-2345 has a strong preference
for the log-normal distribution. The only RRAT to favor the exponential model
is J2355+1523, but it is a weak Bayes ratio with large errors. In either case,
both distributions for J2355+1523 strongly suggest a high nulling fraction. All
the uncertainties provided are the 68th percentile confidence intervals.

Forward modeling can be done by using the user’s preferred
fitting method. In this case, we show a maximum likelihood fit
for P(det|Sq) in Figure 2. We perform many maximum
likelihood fits with the polynomials of Equation (12) ascending
from first order to tenth order. The polynomial with the closest
reduced Xf to 1 is accepted. Therefore, the polynomial order
can change for each set of injections depending on the best fit.

3. Simulations

To assess the limitations of LuNfit, we simulate various sets
of pulsars with different luminosity parameters and numbers of
detected pulses. For each set of luminosity parameters, we
simulate a pulse, add Gaussian noise based on the measured
P (S; detlST, 04), and then determine whether it will be detected
according to the measured P (det|S; g). This process is repeated
until the desired number of pulses is obtained. We then employ
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LuNfit to characterize each set of simulations. In total, 20
different sets of parameters are simulated for each luminosity
distribution. We simulate one realization for each set of «
parameters for the following scenarios:

1. 150 detections, which represents the minimum required
for a reliable fit for LuNfit

2. 500 detections, a reasonable number typically observed
for the most prolific RRATs discovered by CHIME
(Dong et al. 2023)

3. 1000 detections, approximately the number of detections
made by the Five-hundred-meter Aperture Spherical
Telescope (FAST) for the most prolific FRBs (Li et al.
2022; Zhou et al. 2022; Zhang et al. 2023)

4. 5000 detections, the best-case scenario that can be
achieved for the most prolific RRATS.

These simulation results are presented in Appendix Figures 10
and 11. Note that all simulations of the log-normal luminosity
model were made with ¢ =0.5. In summary, we recover the
correct parameters in almost all situations, with the exponential
model requiring fewer detections for the same error region
compared to the log-normal model. This is due to the fact that
the log-normal distribution is characterized by two parameters
(as opposed to one for an exponential distribution), which
allows more flexibility when modeling the data. The recovered
parameters are generally more accurate when there are more
detected pulses and/or the median luminosity is higher. The
true N will be lower for a higher median luminosity, and LuNfit
will not need to account for as many missed pulses, leading to
smaller error regions. Conversely, for lower median luminos-
ities, LuNfit accounts for more missed bursts, and the error
regions are larger. This characteristic is universal across
luminosity models. These simulations allow us to understand
the limitations of LuNfit and provide valuable insights into its
performance under various scenarios.

We compare the exponential and log-normal luminosity
distributions via the Bayes ratio to see if LuNFit can correctly
identify the correct true underlying distribution. We simulate
four scenarios for both the log-normal and exponential
distributions: 150, 500, 1000, and 5000 detections (that is,
the true underlying distribution is log-normal or exponential).
We simulate 20 parameter sets for each scenario. We vary p
from —0.5 to 1 for the log-normal model while keeping o = 0.5.
For the exponential distribution, we vary k from 0.5 to 2.
Appendix Figures 12 and 13 show the Bayes ratios between the
log-normal and exponential models for all of our simulations.
LuNfit can retrieve the correct luminosity distribution for most
cases. In general, when a pulsar follows an exponential
distribution, LuNfit can always choose the correct model. On
the other hand, with only 150 detections, the Bayes ratio is
always low for the log-normal distribution. The Bayes ratio for
log-normal distributions increases as more detections are made
or y increases. The reason for the p dependence is that log-
normal distributions approach exponential distributions for low
values of pu. Therefore, it becomes more difficult to parse the
two distributions apart.

3.1. Validation on Known Pulsars

We validate our method by performing LuNfit on two
pulsars with known nulling fractions, where the nulling fraction
isgiven by NF = 1 — % and N, = % is the total number of
rotations that the observation time allows. This is shown in
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Figure 4. B1905+439 (P =1.2365) is a bright, slow isolated
pulsar and not known to exhibit any nulling. Indeed, we find no
evidence of nulling in the LuNfit results given in Figure 4. We
used one CHIME /Pulsar observation on MJD 59,161, totaling
871 s, and detected 473 pulses. When LuNfit is applied to this
pulsar, it accurately indicates a nulling fraction of —0.02(5),
consistent with 0 and confirming its non-nulling nature. In this
calculation, we have lifted the prior on N and thus allow
NF <0 to show the efficacy of LuNfit. This is shown in
Figures 4(a) and (b). In Figure 4(a), we remove the constraints
on the prior for N to show that LuNfit converges on the correct
value even when not constrained. The constraints on N are then
reapplied in Figure 4(b).

J2044+4614 (P =1.393 ), on the other hand, is a known
nulling pulsar, and its nulling properties were previously
discovered in Ng et al. (2020). We used 39 CHIME /Pulsar
observations from MJD 58,808 to MJD 58,579 and detected
585 bursts with 34,130 s of observations. We show the LuNfit
results in Figure 4. To compare our results with previously
documented methods, we use the nulling measurement method
discussed in Ritchings (1976). The LuNfit derived nulling
fraction is 0.4(2) and agrees with the Ritchings (1976) method
value of ~0.41. The two methods are shown in Figure 4(c). In
addition, the nulling fraction as measured by Ng et al. (2020) is
>9%, consistent with our findings and shown as the shaded
region in Figure 4(c).

3.2. Conversion to Flux Density Units

Conversion from the S/N-based Sy to Jansky-based units
can be done by applying the single-pulse radiometer equation
(e.g., Good et al. 2021),

Teys

G AvAt n,

to each detection. Then one would repeat the analysis detailed
in Section 2 with Speak in place of Sge, being careful to apply
the same radiometer conversion factor to both the P (det|S; ger)
and P (S; get|S7, 04). We show the results of this in Table 3.
Only the luminosity function is altered in this change of
variables, and thus the result for N does not change in Table 3.
We caution, however, that due to CHIME/Pulsar’s poor flux
density calibration issues (Good et al. 2021; Dong et al. 2023),
these values should only be taken as a lower limit.

An alternative method for converting the flux is to transform
the resultant distribution. We can directly transform the units of
the luminosity distribution to flux density by

P(S/N)dS/N = P(Speak)dspeak' (15)
Here, P(S/N) is the probability distribution of the S/N, and

P(Spear) is the probability distribution of the peak flux density.
Rearranging and applying Equation (14) gives

Speak = S/N (14)

—1
Toys
P (Speak) = P(S/N)(iy] : (16)

G AvAm,

4. Results

We present our findings concerning the constrained luminosity
function, the intrinsic nulling fractions, and the total pulse number
for three RRATSs discovered in Karako-Argaman et al. (2015)
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Figure 4. (a) LuNfit for B1905+39: as expected, the nulling fraction peaks at ~0. The shaded region is forbidden due to negative nulling fractions. We show this
region to demonstrate that even when physical constraints are not set, LuNfit converges on reasonable values. (b) LuNfit for B1905+4-39 again, with the physical limits
for nulling fraction. (c) LuNfit for J20444-4614. The predicted nulling fraction according to the method outlined in Ritchings (1976) is ~0.41. This is shown by the red
dashed line. The red-shaded region shows the allowed nulling fractions provided by Ng et al. (2020). The black dashed lines show the 68th percentile and 95th

percentile confidence intervals and the median.

and Dong et al. (2023). They are J0012+5431, J1538+-2345, and
J2355+1523. Detailed results are summarized in Table 3, while
visual representations of the dynesty nested sampling fits can
be found in Figures 5, 6, and 7.

Upon examination, a notable trend emerges: the fitted
exponential distribution consistently exhibits a higher median
St than the log-normal distribution, encompassing all pulsars
outlined in Table 3. This distinction consequently results in a
diminished total pulse count, N, for the exponential
distribution.

J0012+4-5431 is an RRAT first discovered in Dong et al.
(2023). As a result, we had an abundant amount of CHIME/
Pulsar data available for this analysis. The LuNfit results for

JOO12+5431 are presented in Figure 5. While it initially
appears to be extremely sporadic (~1.6 pulses per hour),
LuNfit shows that this source is actually very faint and
potentially less sporadic than initially thought. Consequently,
CHIME /Pulsar appears to be detecting only the most intensely
luminous tail of the distribution. We folded multiple observa-
tions to find signs of continuous emission without success.
However, this is in line with expectations, considering the
source’s faintness, prolonged rotational period, and the brevity
of CHIME /Pulsar observation windows. The long rotational
period dictates that within the brief ~10 minutes of a CHIME/
Pulsar observation, accumulating a substantial number of
rotations to bolster the S/N significantly is unattainable. This
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Figure 5. Corner plot and fit for JO012+4-5431. The log of the Bayes ratio is 0.7(3). Panels (a) and (b) show the log-normal model, and (c) and (d) show the exponential
model. Figures (a) and (b) show the LuNfit corner plots for JO012+5431. Figures (b) and (d) show the LuNfit fits as applied to the detections of JO012+5431. The
black dashed lines show the 68 percentile, 95 percentile, and the median. We also provide the selection effect for this source as the blue line.

suggests that follow-up with a more sensitive instrument with
longer integration times such as FAST or the Green Bank
Telescope (GBT) could confirm our findings. With the Bayes
ratio only slightly leaning in favor of the log-normal model, we
present LuNfit’s results for both the log-normal and exponen-
tial models in Figure 5.

J1538+2345 is an RRAT first discovered in Karako-
Argaman et al. (2015). For this RRAT, LuNfit heavily favors
the log-normal distribution. Thus, only that is provided in the
LuNfit results in Figure 6. This source is extremely prolific for
an RRAT with a nulling fraction of 0.749(5). As many
telescopes have observed this source, we compare our results to

that of the observational burst rates reported by the LOFAR
(Karako-Argaman et al. 2015), the GBT (Karako-Argaman
et al. 2015), and the FAST (Lu et al. 2019) who reported
observational nulling fractions of 0.94, 0.93, and 0.71,
respectively. The FAST observations align the best with
our selection-corrected nulling fraction of 0.749(5). This is
likely due to the extreme sensitivity of FAST, enabling it to
probe the intrinsic properties of J1538+2345. We obtained a
much higher number of observations than Lu et al. (2019).
Therefore, we likely have a more accurate long-term average.
The slight discrepancy between the LuNfit results and the
FAST results is likely due to the length of observations. The
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Figure 6. Corner plot and fit for J1538+2345. As J1538+-2345 highly prefers the
constraints on J1538+-2345, and the right panel shows the fit given the mean values.

study by Lu et al. (2019) was conducted with only four
observations, each lasting 30 minutes. The initial two observa-
tions yielded significantly elevated levels of emitted pulses
from J15384-2345, which likely contributed to the lower
nulling fractions reported by FAST.

J2355+4-1523 is an RRAT first discovered in Dong et al. (2023).
Among the RRATS in that study, it was one of the most prolific
sources identified, making it an ideal candidate for LuNfit. The
LuNfit results are shown in Figure 7. We find that the Bayes ratio
marginally favors the exponential distribution. Thus, we provide
LuNfit results for both models in Figure 7. In either case, the
source is bright, and the predicted nulling fraction is close to 1.

5. Discussion

We have shown through this study that LuNfit is an effective
tool for probing the intrinsic luminosity function and burst rate
of RRATSs. This has been validated through simulation and
comparison with pulsars of known nulling fractions. We then
applied LuNfit to three known RRATS, finding their intrinsic
luminosity functions and nulling fractions. Below, we provide
a detailed discussion of LuNfit’s limitations, how it compares
with other techniques, and its use cases. Furthermore, we
provide a discussion on how LuNfit can be adapted to be used
for exotic radio transients such as FRBs and radio magnetars.

5.1. Comparisons with Other Methods

The methods in the literature for correcting for the selection
effects of single pulses involve estimating the true burst count
by scaling up by the lost fraction, e.g., for FRB121102 (Li et al.
2021). This method involves sampling the selection effects like
LuNfit. Then, they place each detection into a histogram bin.
The histogram bin is divided by the detection fraction to
recover the “true count.” While this method can be effective
when the telescope’s sensitivity accurately captures the “turn-
over” of the luminosity function, it becomes unreliable in cases
where the source is dim, the telescope lacks sensitivity, or a
combination of both.

10
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Three factors contribute to the limitations of the Li et al.
(2021) approach. First, accurately measuring the selection
effects becomes extremely challenging when the detection
fraction is low. As the detection fraction decreases, probing the
selection function requires exponentially more computing
resources. To address this issue in our analysis, we cut off
our selection function at a minimum value of Sy = 2a.
Second, even if the selection effects are well measured, in
parameter spaces where the detection fraction is effectively
zero, the simple correction used in conventional methods leads
to nonsensical results, as the corrected values go to infinity.
Lastly, the Li et al. (2021) correction requires binning of the
detected brightnesses, losing information in the process.

To illustrate the performance of LuNfit compared to the Li
et al. (2021) method outlined, we provide a comparison in
Figures 8 and 9. For the Li et al. (2021) method, we correct
each histogram bin by dividing by the detection fraction of that
bin. We perform a maximum likelihood fit to the scaled bin
heights to get the luminosity function parameters. We find that
LuNfit exhibits much greater accuracy and precision compared
to conventional methods in all cases, especially when the true N
is much higher than the detected n. In summary, LuNfit offers
an improved approach to handling selection effects accurately
and can provide more reliable results, especially in cases where
conventional methods may struggle due to low detection
fractions.

5.2. Use for Intermittent Pulsars and Comparisons with Other
Tools

LuNfit has the potential to measure the nulling fraction of
many intermittent pulsars and RRATSs using the vast observa-
tion capabilities of CHIME. While the sample analyzed here is
too small to say anything about the population, it does show
that there can exist a large range of nulling behavior between 0
and 1 nulling fractions. If raw filterbank data were saved, then
the Gaussian mixture model (Kaplan et al. 2018) or the
Ritchings (1976) method also can provide comparable results
to LuNfit for measurements of the nulling fraction. However,
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Figure 7. Fit and corner plots for J2355+4-1523. The log of the Bayes ratio is 2.7(4). Panels (a) and (b) show the log-normal model, while (c) and (d) show the
exponential model. Figures (a) and (b) show the LuNfit corner plots for J2355+1523. Figures (b) and (d) show the LuNfit fits as applied to the detections of J2355
+1523. The black dashed lines show the 68 percentile, 95 percentile, and the median. We also provide the selection effect for this source as the blue line.

LuNfit has four benefits over the aforementioned tools. First,
LuNfit can provide the single-pulse luminosity function of
intermittent pulsars. Although, arguably, the Gaussian mixture
model can also provide a similar measure, this is not possible
with the method from Ritchings (1976). Second, as transient
astronomy enters an era of big data, many observatories and
programs such as CHIME (CHIME/FRB Collaboration et al.
2018), UTMOST (Farah et al. 2019), CRAFT (Macquart et al.
2010), and MeerTRAP (Rajwade et al. 2022) are not saving all
observations, rather, only the segments that contain identified
pulses by their real-time pipelines. This poses a problem for the
Gaussian mixture model and the Ritchings (1976) method as
they require data measurements during nondetections. LuNfit

11

avoids this problem by only requiring a measurement of the
selection function, which has already been implemented in
some experiments like CHIME/FRB (Merryfield et al. 2023).
Third, the Gaussian mixture method and the Ritchings (1976)
method require identifying the pulse phase where the pulsar
emits. If the source is extremely intermittent, where there are
only a few single pulses per observation, a few pulses spread
across many observations (i.e., some observations contain no
detectable emission), or the source is very faint such that even
when folded, no appreciable emission is seen, the analysis
becomes near impossible with both the Gaussian mixture
method and the Ritchings (1976) method. This is not a problem
for LuNfit as long as enough single-pulse detections were made
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on the higher luminosity tail of the distribution. This is because
LuNfit does not require pulse phase information, only whether
or not detections were made. Finally, LuNfit gives the ability to
select between different physically driven models. In this study,
we focused on the exponential and log-normal distributions.
However, other models, such as the double Gaussian, can be
used. LuNfit is based on nested sampling, so the Bayes ratio
can always be used to select the preferred model.

5.3. Potential for Repeating FRB Studies and Limitations

We have outlined here the application of LuNfit for RRATS
and intermittent slow pulsars. LuNfit can also constrain other
radio transients, such as repeating FRBs. Tools like the
Gaussian mixture model (Kaplan et al. 2018) and the Ritchings
(1976) method cannot be used on repeating FRBs due to the
lack of strict periodicity. In our current implementation of
LuNfit, we do not include the width of the pulses in the
analysis. This decision is based on the observation that for slow
pulsars, the width variations are generally small enough to
ignore their impact on the selection function. However, this
assumption may not hold for repeating FRBs that exhibit
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drastic width variability (Pleunis et al. 2021). Therefore, LuNfit
can only be applied to repeating FRBs that show minimal width
variation. Future iterations of LuNfit will incorporate width
dependence to address this issue. As more parameters are
introduced, the computational complexity of the analysis
increases. Dealing with selection effects in multiple parameters
becomes more resource intensive. Therefore, optimizations will
be required to retrieve selection effects while including width
variations effectively.

6. Conclusion and Future Work

In this study, we demonstrate the importance of accounting
for selection biases inherent to the telescope and detection
pipeline. This allows the accurate determination of the intrinsic
pulse rate and luminosity function of a slow pulsar or RRAT.
To achieve this, we created an analysis framework named
LuNfit utilizing Bayesian nested sampling, leveraging the
dynesty package.

We present detailed simulations and validation procedures
for LuNfit in Section 2. This involved many sets of simulations
of fake pulsars and characterizing the nulling fraction of two
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pulsars, B19054-39 and J2044+4614, where the nulling
fraction is known. As a conclusive application of LuNfit, we
apply it to three known RRATS, successfully ascertaining their
intrinsic luminosity functions and burst rates. We show that the
LuNfit nulling fractions for J1538+2345 align most closely
with the FAST observations. We argue that this is likely due to
the impressive sensitivity of FAST, enabling them to probe the
intrinsic properties of J1538+2345 without much selection
bias. The nulling fraction measured by FAST is likely biased
slightly high due to short observations. Notably, our findings in
Section 5.1 highlight the limitations of conventional techniques
in capturing the intrinsic luminosity distribution and burst rate
when compared with LuNfit.

Looking ahead, future work includes improving LuNfit by
incorporating width dependence and more model types, such as
the single and double Gaussian. This extension will render
LuNfit more versatile, enabling its effective utilization for
sources emitting bursts with complex and varying morpholo-
gies. This enhancement will allow LuNfit to be applied to all
repeating FRBs, pulsars, and radio magnetars. Additionally,
harnessing LuNfit’s current capabilities, we intend to quantify
the nulling fraction for numerous intermittent pulsars and
RRATS using CHIME /Pulsar observations. This will provide a
systematic understanding of the nulling slow pulsar population.
Finally, we plan to make the codebase publicly available with
the next iteration of LuNfit in the near future.
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Appendix
Simulations

Figures 10—13 show simulations demonstrating the recovery
capabilities of LuNfit.
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Figure 10. Simulations and recovery capabilities of LuNfit for the exponential distribution. The axes show the LuNfit recovered quantities against the true simulated
quantities. N and k are the parameters constrained for an exponential luminosity distribution. The red dashed line is the identify line. All points should lie on this line
for a perfect fitting algorithm. This figure shows the recovered k (N) value given a simulated (true) k (N) value. As expected for high true N, the error bars increase as
this corresponds to an intrinsically fainter pulsar. In other words, LuNfit needs to predict more missed pulses for higher true N values. For an exponential distribution, a
fainter pulsar corresponds to a larger k. Therefore, we similarly find that the errors for k increase for larger k. LuNfit performs significantly better for an exponential
distribution compared to a log-normal distribution due to the smaller parameter space.
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Figure 11. Simulations and recovery capabilities of LuNfit for the log-normal distribution. The axes show the LuNfit recovered quantities against the true simulated
quantities. Terms y, o, and N are the parameters constrained for a log-normal luminosity distribution. All simulations shown here have a ¢ of 0.5. Again, the red
dashed line is the identity line. All points should fall on this line for a perfect fitting algorithm. Like the exponential distribution shown in Figure 10, the fit is worse for
high true N and low true p as this indicates a fainter pulsar. The uncertainties of the log-normal luminosity model are markedly larger than that of the exponential
luminosity model. This is because of the larger parameter space to explore. All simulations were performed with o = 0.5; thus, all data points in the middle column
should equal 1 (within uncertainty). This figure shows that in most cases LuNfit is able to retrieve the correct o value.
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Figure 13. Bayes ratio for simulated log-normal distributions. The Bayes ratio is given in favor of the log-normal distribution for four sets of log-normal luminosities.
That is, positive values indicate a preference for a log-normal distribution. There are 150 (a), 500 (b), 1000 (c), and 5000 (d) detected pulses in each simulation. The o
for these simulations was set to 0.5. The effects of a brighter median luminosity (higher p) are much more pronounced for the log-normal distribution than the
exponential distribution. Higher 1 values are clearly positively correlated with higher Bayes ratios. This is due to LuNfit being able to completely fit the “turnover” in
log-normal distributions. Additionally, the log-normal tends toward an exponential for low y values. Once again, a larger number of detections aid the differentiation

between log-normal and exponential distributions.
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