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Abstract

A new flexible tensor model for multiple-equation regressions that accounts for latent regime changes is pro-
posed. The model allows for dynamic coefficients and multi-dimensional covariates that vary across equations.
The coefficients are driven by a common hidden Markov process that addresses structural breaks to enhance the
model flexibility and preserve parsimony. A new soft PARAFAC hierarchical prior is introduced to achieve di-
mensionality reduction while preserving the structural information of the covariate tensor. The proposed prior
includes a new multi-way shrinking effect to address over-parametrization issues while preserving interpretabil-
ity and model tractability. Theoretical results are derived to help with the choice of the hyperparameters. An
efficient Markov chain Monte Carlo (MCMC) algorithm based on random scan Gibbs and back-fitting strat-
egy is designed with priority placed on computational scalability of the posterior sampling. The validity of
the MCMC algorithm is demonstrated theoretically, and its computational efficiency is studied using numeri-
cal experiments in different parameter settings. The effectiveness of the model framework is illustrated using
two original real data analyses. The proposed model exhibits superior performance compared to the current
benchmark, Lasso regression.
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1. Introduction

As data grow in volume and complexity, it is increasingly common to record them as high-dimensional
arrays or tensors. Such structures appear in many applications and fields, such as neuroimaging [19, 37],
biostatistics, financial networks [7], or even more generally, in time series [8]. People are often interested in
characterizing the relationship between a tensor predictor and a scalar outcome [19] or tensor outcome [38].
Tensor regression has been studied extensively in a linear model framework. Nevertheless, a common challenge
within the framework of regression is model misspecification. One of the sources of model misspecification is
the presence of dynamic regimes, which naturally call for models with time-varying parameters.

In this paper, we assume a Hidden Markov chain dynamics for the regression coefficients because it allows
for model parsimony while preserving a high level of flexibility compared to other time-varying parameter
models, which typically require a larger number of factors or parameters [e.g., see 24, 28]. Hidden Markov
Models (HMM), also known as Markov Switching (MS), have been introduced to capture structural changes
and regimes [17]. Since the seminal works on univariate autoregressive HMMs [14, 22], HMMs have been
extended in different directions. The univariate extensions include the MS ARMA [10], MS stochastic volatility
models [36], MS with time-varying transition [25] and random transition [4, 6]. The multivariate extensions
include MS Vector Autoregressive (VAR) models introduced by [35], MS stochastic volatility VARs [13], MS
graphical VARs [5] and MS panel data models [1, 9, 12]. Efforts have been made to address abrupt structural
changes in temporal networks by [7]. They proposed a tensor-on-tensor logistic regression model combining
a low-rank decomposition and HMM to model the coefficient tensor. The contribution of our paper is multi-
fold. First, we extend the soft tensor linear regression models [19, 32, 38] to an HMM (or MS) framework to
accommodate structural breaks. We assume the margins in the Parallel Factor (PARAFAC) representation, also
called CANDECOMP/PARAFAC or Polyadic Decomposition [e.g., see 21, 26], of the coefficient tensor are
driven by a common hidden Markov chain process. Thus, a flexible time-varying parameter model is obtained
with a small increase in the latent space dimension and the number of parameters. Second, we consider a
multi-equation setting in which the latent process provides a time-varying structure to several tensor regression
models involving different response variables and, possibly, different sets of covariates. Third, we propose a
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Bayesian inference procedure that relies on numerical exploration of the posterior via a new and efficient Gibbs
sampler, which reduces computational costs and improves scalability. Finally, using a common latent process
is intended to address two goals: 1) it facilitates the integration of information about the latent process from
multiple outcomes, and 2) it robustifies the estimation of regime changes, which must be supported by multiple
outcome variables simultaneously.

The complex structure of multi-dimensional data naturally poses challenges such as over-parame-trization
and overfitting issues. A simple approach in the tensor regression framework is to vectorize the tensor predic-
tor and regress the response variable on a large vector of tensor entries with some form of penalization and
variable selection. However, this approach completely ignores the structural relationships embedded in the
tensor predictor. Most research on tensor regression focuses on dimensionality reduction for tensor predic-
tors or coefficients. Various dimensionality reduction strategies have been proposed to cope with these issues.
For instance, [44] adopted a two-stage procedure to study the relationship between individuals’ structural con-
nectomes and human traits, using principal component analysis on the tensor predictors to achieve dimension
reduction and then fitting a model using lower dimensional summaries of tensor predictors. Similarly, [11]
carried out SVD on high dimensional fMRI data to study the relationship between functional connectivity and
Alzheimer’s disease risk. However, this approach suffers from the unsupervised nature of PCA, and the loss
of structural information on the tensor predictors and interpretation of estimated coefficients could be difficult.
Thus, we follow a different approach based on the reduction of dimensionality of tensor coefficients, which
preserves the structural dependence of the predictor tensor.

Within the frequentist paradigm, [43] applied Tucker decomposition on the tensor coefficients and proposed
a fast algorithm (Tensor Projected Gradient) to minimize the empirical loss function. [46] used PARAFAC
decomposition, a special case of Tucker decomposition, on the tensor coefficients and relied on maximum
likelihood estimation to perform neuroimaging data analysis. [27] used a neural network combined with Tucker
representation to address multi-way data analysis. In this paper, we follow a flexible Bayesian modelling
approach.

Within the Bayesian paradigm, [42, 45] proposed non-parametric methods based on Gaussian Process pri-
ors. In a scalar on tensor regression framework, [20] proposed a novel multi-way shrinkage prior on the
PARAFAC representation of the coefficient tensor. Their work was extended by [37], who explored a more
general Tucker decomposition on the tensor coefficients. In follow-up work, [19] proposed a Bayesian network
shrinkage prior and used a spike-and-slab prior distribution to determine which brain nodes are most influential
to creativity. In the case of tensor on tensor regression, [38] proposed to use the Tucker decomposition of the
coefficient tensor without assuming the dimension of the core tensor. In this paper, we follow a soft PARAFAC
framework [32] where the hierarchical prior distribution of [20] is modified to allow the coefficient tensor to
deviate randomly from the rigid low-rank PARAFAC representation. We modified the multi-way shrinkage pri-
ors from [32] and [20] to facilitate prior calibration and to improve the tractability of the conditional posterior
distributions. We developed an efficient Markov chain Monte Carlo (MCMC) algorithm to achieve better scal-
ability, relying on a random scan Gibbs sampler within the back-fitting strategy, usually employed in Bayesian
high-dimensional models [23, 29, 47].

The paper is organized as follows: in Section 2, we revisit the concept of soft PARAFAC decomposition for
dimensionality reduction and introduce the Markov-Switching multiple-equation Tensor Regression (MSTR)
and the Bayesian framework for inference. In Section 3, we propose a new MCMC algorithm based on Random
Partial Scan Gibbs and back–fitting strategy, prove its ergodicity and demonstrate its performance using nu-
merical experiments (simulation results are shown in Appendix C of the Supplement). In Section 4, we test our
model with two applications that show the gain in performance in terms of in-sample fitting and out-of-sample
forecasting. The paper ends with Section 5, which contains conclusions and future promising directions.

2. A Markov-switching multiple-equation tensor regression model

To simplify the exposition in this section, we assume covariates are common to all the equations. Fur-
thermore, the error terms are assumed to be independent across equations, but the approach generalizes to
equation-specific covariate tensors and dependent errors. Our MSTR model assumes a system of N equations
with time-varying parameters 

y1,t = µ1(st) + ⟨B1(st), Xt⟩ + σ1(st)ε1,t,

... (1)
yN,t = µN(st) + ⟨BN(st), Xt⟩ + σN(st)εN,t,

t ∈ {1, 2, . . . ,T }, where yℓ,t, ℓ ∈ {1, . . . ,N} are scalar response variables, Xt is a p1 × · · · × pM covariate tensor,
Bℓ(st), ℓ ∈ {1, . . . ,N} are p1 × · · · × pM coefficient tensors, with M denoting the number of tensor modes, εℓ,t,
ℓ ∈ {1, . . . ,N} are i.i.d. from N(0, 1), {st, t ∈ {1, . . . ,T }} is a common latent process, and ⟨·, ·⟩ denotes the

2



,y1,t µ1(st)

= +

K∑
k=1

I(st = k)

∧

∧

.

.

.

σ1(st)

.

.

.

ε1,t

.

.

.

Xt,111 Xt,121 Xt,222

Xt,211 Xt,221

Xt,112 Xt,122 Xt,223

Xt,113 Xt,123

B1,k,211 B1,k,221

B1,k,111 B1,k,121 B1,k,222

B1,k,112 B1,k,122 B1,k,223

B1,k,113 B1,k,123

,

.

.

.

yN,t

.

.

.

µN(st)

∧

∧

+ ◦

σN(st) εN,t

Xt,111 Xt,121 Xt,222

Xt,211 Xt,221

Xt,112 Xt,122 Xt,223

Xt,113 Xt,123

BN,k,211 BN,k,221

BN,k,111 BN,k,121 BN,k,222

BN,k,112 BN,k,122 BN,k,223

BN,k,113 BN,k,123

Fig. 1: Graphic representation of a multiple-equation tensor regression with switching parameters µℓ(st), Bℓ(st) ∈ R2×2×3 and σℓ(st), and
covariate tensor Xt ∈ R2×2×3. Green shades denote response variables and covariates, and orange shades denote parameters and latent
variables.

inner product for tensors [21, 26]. While the dependent variables are conditionally independent, joint inference
remains essential in our tensor-on-tensor regression because the equations are governed by a common latent
process which captures the underlying dynamics across variables.

The latent process is a K-state homogeneous Markov chain with transition probability Pr(st = j|st−1 = i) =
pi, j, i, j ∈ {1, . . . ,K} and the tensor regression parametrization used is

µℓ(st) =
K∑

k=1

µℓ,kI(st = k), Bℓ(st) =
K∑

k=1

Bℓ,kI(st = k), σ2
ℓ (st) =

K∑
k=1

σ2
ℓ,kI(st = k). (2)

Alternative parameterizations for the coefficients can be used; for example, see [17] for conditionally linear
single-equation models and [13] for conditionally linear multiple-equation models. A graphical representation
of our tensor regression model with N equations and a 3-mode covariate tensor of dimension p1 = 2, p2 = 2
and p3 = 3 is shown in Fig. 1.

Since, in many applications, the number of covariates in (1) is large, a dimensionality reduction strategy
is needed. In this paper, we follow [32] and [7, 8] and consider a low-rank representation combined with a
hierarchical prior distribution. The hierarchical prior allows for shrinking effects in the coefficient tensors Bℓ,k,
k ∈ {1, . . . ,K}, and the low-rank representation induces further shrinking effects along different modes. We
assume a PARAFAC representation and decompose the state-specific coefficient tensor as follows

Bℓ,k =
D∑

d=1

B(d)
ℓ,1,k ◦ B(d)

ℓ,2,k ◦ · · · ◦ B(d)
ℓ,M,k, (3)

where ◦ is the element-by-element Hadamard product, B(d)
ℓ,m,k, m ∈ {1, 2, . . . ,M} are multiplicative factors ([32]).

The hierarchical prior distribution includes three stages. At the first stage, an inverse gamma prior distri-
bution IG(aσ, bσ) with shape and scale parameters aσ and bσ is assumed for σ2

ℓ,k and a tensor-variate normal
distribution [30, 31] is assumed for the coefficient tensor

B(d)
ℓ,m,k ∼ TN p1,...,pM

(
G(d)
ℓ,m,k, τℓ,kκ

2
ℓ,m,kζ

(d)
ℓ,k Ip1 , . . . , IpM

)
, (4)

ℓ ∈ {1, . . . ,N}, m ∈ {1, . . . ,M}, d ∈ {1, . . . ,D}, k ∈ {1, . . . ,K}, where TN p1,...,pM (G,U1, . . . ,UM) denotes the
tensor-variate normal distribution with p1 × · · · × pM location tensor G, pm × pm covariance matrix Um for the
mth mode elements. The location G(d)

ℓ,m,k is parametrized as follows:

G(d)
ℓ,m,k = ιp1 ⊗ · · · ⊗ ιpm−1 ⊗ γ

(d)
ℓ,m,k ⊗ ιpm+1 ⊗ · · · ⊗ ιpM , (5)

where ⊗ denotes the outer product, ιn = (1, . . . , 1)⊤ is the n-dimensional unit vector, γ(d)
ℓ,m,k is the mth PARAFAC

margins of size pm.
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In the conditional mean of the components B(d)
ℓ,k given γℓ,k = {(γ

(d)
ℓ,1,k, . . . ,γ

(d)
ℓ,M,k), d ∈ {1, . . . ,D}}, we have

E
(
Bℓ,k | γℓ,k

)
=

D∑
d=1

E
(
B(d)
ℓ,1,k | γ

(d)
ℓ,1,k

)
◦ · · · ◦ E

(
B(d)
ℓ,M,k | γ

(d)
ℓ,M,k

)
=

D∑
d=1

(
G(d)
ℓ,1,k ◦ · · · ◦G(d)

ℓ,M,k

)
=

D∑
d=1

γ(d)
ℓ,1,k ⊗ · · · ⊗ γ

(d)
ℓ,M,k. (6)

In the second stage, we assume that the margins from the PARAFAC decomposition are independent and follow
multivariate normal distributions

γ(d)
ℓ,m,k ∼ Npm (0, τℓ,kζ(d)

ℓ,k W (d)
ℓ,m,k), (7)

and assume the distributions are centered around the null vector with scale given by the product of the scalars
τℓ,k and ζ(d)

ℓ,k and the diagonal matrix W (d)
ℓ,m,k = diag(w(d)

ℓ,m,1,k, . . . ,w
(d)
ℓ,m, jm,k

, . . . , w(d)
ℓ,m,pm,k

). This random scale
specification allows for shrinkage at different levels.

At the third stage of the prior, we borrow from [20] and specify the scale prior distributions to induce
shrinkage across components and rows

τℓ,k ∼ Ga(aτ, bτ), κ2ℓ,m,k ∼ Ga(aκ, bκ), w(d)
ℓ,m, jm,k

∼ Exp((λ(d)
ℓ,m,k)2/2), jm ∈ {1, . . . , pm}

λ(d)
ℓ,m,k ∼ Ga(aλ, bλ),

(
ζ(1)
ℓ,k , . . . , ζ

(D)
ℓ,k

)
∼ Dir(α/D, . . . , α/D),

where Ga(a, b), Exp(λ) and Dir(ν1, . . . , νD) denote the Gamma, Exponential and Dirichlet distributions, re-
spectively. Compared to [32] our prior assumes the global scale τℓ,k contributes not only to the variance of
γ(d)
ℓ,m,k but also to that of one of the tensor coefficients B(d)

ℓ,m,k. This allows for stronger shrinkage effects and a
full factorization of the prior variance, as detailed below. The scale parameter w(d)

ℓ,m, jm,k
is the jmth element of

the diagonal of W (d)
ℓ,m,k, with jm ∈ {1, . . . , pm}. It is a row-specific parameter that shrinks the individual elements,

γ(d)
ℓ,m, jm,k

, of the PARAFAC margins γ(d)
ℓ,m,k. Together with the prior on λ(d)

ℓ,m,k, they lead to an adaptive LASSO-

type penalty on γ(d)
ℓ,m,k [2]. The parameters ζ(d)

ℓ,k are component-specific and allow a subset of the D components
to contribute substantially to the PARAFAC approximation while leaving the values of other components close
to zero. The transition probabilities (p1k, . . . , pKk) are assumed to follow a Dirichlet distribution(

p1,k, . . . , pK,k
)
∼ Dir(ν1, . . . , νK), (8)

for k ∈ {1, . . . ,K}. The choice of the prior hyperparameter value is crucial in Bayesian inference and can greatly
affect the model’s performance. We turn to study the induced prior for the ℓth coefficient tensor Bℓ,k to elicit
the default choice of hyperparameters. In particular, using a multiple-index notation, the variance of the j̃th
entry Bℓ,k, j̃ of coefficient tensor Bℓ,k for the soft PARAFAC, with j̃ = ( j1, . . . , jM), can be written as a function
of the hyperparameters:

V(Bℓ,k, j̃) = CτCζ

aκ
bκ
+

2b2
λ

(aλ − 1) (aλ − 2)

2

, Cζ =
α
D + 1
α + 1

, Cτ =
aτ(aτ + 1)

b2
τ

. (9)

Moreover, the variance of the coefficient entries for the hard PARAFAC is:

Vhard
(
Bℓ,k, j̃

)
= CτCζ

 2b2
λ

(aλ − 1) (aλ − 2)

2

.

Thanks to the assumptions on the global shrinkage scale, the expression for the prior variances in soft
and hard PARAFAC specifications factorize in a global shrinking effect function of aτ, bτ and local shrinking
effects. The ratio between the two variances shows that the difference between soft and hard PARAFAC is not
affected by the global shrinkage scale, thus providing better interpretability of the hyperparameters than [20]
while preserving the tractability of the full conditional distributions in the Gibbs sampling procedure used for
posterior approximation. We define the relative additional variance (AV) introduced by the softening of the
PARAFAC as follows:

AV =
V

(
Bℓ,k, j̃

)
− Vhard

(
Bℓ,k, j̃

)
V

(
Bℓ,k, j̃

) = 1 −
1 + aκ

bκ

(aλ − 1) (aλ − 2)
2b2
λ

−2

,

which depends on the hyper-parameters of the local shrinkage scales and can be used to elicit the values of the
hyper-parameters.
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Proposition 1. For a tensor coefficient, target variance V∗ ∈ (0,∞), target additional variance AV∗ ∈ [0, 1),
we have the following expression,

aκ
bκ
=

bτ
aτ

√
aτV∗

(aτ + 1)Cζ

(
1 −
√

1 − AV∗
)
. (10)

Proposition 1 and the identities in (9) are used in the simulations and empirical applications to help choose
hyperparameters. In particular, we impose restrictions on the induced prior variance such that V(Bℓ,k, j̃) = 1 and
AV = 10%. Moreover, we set α = 1, aτ = 3, aκ = 0.5, aλ = 3, bλ = 2M

√
aλ following [32] and we compute the

values of bτ and bκ from (9) and (10) for which V∗ = 1 and AV∗ = 10%.
The choice of rank D for the soft PARAFAC decomposition of the tensor coefficient can lead to significant

changes in computational costs, with a higher value of D triggering drastic increases in computational time.
However, the increase in D doesn’t necessarily guarantee a vast boost in inferential performance. Intuitively,
the soft PARAFAC can expand away from the low-rank hard PARAFAC structure and achieve a higher-rank
representation of the tensor coefficient. We will provide a discussion in the next section.

3. Posterior approximation

The joint posterior distribution is not tractable, so we develop an MCMC algorithm to sample from it.
Specifically, we use a Gibbs sampling procedure which combines two sampling strategies: i) back-fitting sam-
pling [23] for the coefficients and ii) forward filtering and backward sampling for the latent states [17]. To cope
with the computational cost of the Monte Carlo approximation, we implement a version of the random scan
Gibbs [47].

3.1. Back-fitting representation
In this section, we assume covariate and coefficient tensors of general order. Let us denote with B(d)

ℓ,m, j̃m,k
the

p1 × · · · × pm−1 × pm+1 × · · · × pM tensor with M − 1 modes which is the jmth slice of tensor B(d)
ℓ,m,k along the

mode m in the regime k for the ℓth equation, where j̃m = {( j1, . . . , jm, . . . , jM), jh ∈ {1, . . . , ph},∀h , m} is the
collection of index values along M − 1 modes while keeping fix the index jm of the mode m.

For ℓ ∈ {1, . . . ,N}, k ∈ {1, . . . ,K}, m ∈ {1, . . . ,M}, d ∈ {1, . . . ,D} and jm ∈ {1, . . . , pm} define the qm ×

1 vector β(d)
ℓ,m, jm,k

= vec(B(d)
ℓ,m, j̃m,k

), with qm =
∏

l,m pl, obtained by stacking vertically all 1-mode fibers of
the tensor following a lexicographic order of the indexes [21, 26]. We further define the collections βk =

(β1,k, . . . ,βN,k) and γk = (γ1,k, . . . , γN,k), with βℓ,k = (β(1)
ℓ,1,1,k, . . . ,β

(d)
ℓ,m, jm,k

, . . . ,β(D)
ℓ,M,pM ,k

) and γℓ,k = (γ(1)
ℓ,1,1,k,

. . . , γ(d)
ℓ,m, jm,k

, . . . , γ(D)
ℓ,M,pM ,k

)⊤, where γ(d)
ℓ,m, jm,k

is the jmth entry, jm = 1, . . . , pm, of the PARAFAC margin γ(d)
ℓ,m,k

defined in Section 2.
We summarize our Bayesian model in the Directed Acyclic Graph (DAG) representation of Fig. 2 where

yt = (y1,t, . . . , yN,t)⊤ is the collection of response variables across equations, p = (p1, . . . ,pK) is the collection
of transition probabilities, β = (β1, . . . ,βK), γ = (γ1, . . . ,γK), σ2 = (σ2

1, . . . ,σ
2
K), and µ = (µ1, . . . ,µK)

denote the collections across equations and states of the regression coefficients, the PARFAC components,
the error scale parameters and intercepts, respectively, where µk = (µ1,k, . . . , µN,k)⊤, σ2

k = (σ2
1,k, . . . , σ

2
N,k)⊤

and pk = (p1,k, . . . , pK,k)⊤. In the same DAG ζ = (ζ1, . . . , ζK), τ = (τ1, . . . , τK)⊤, w = (w1, . . . ,wK), λ =
(λ1, . . . , λK), and κ2 = (κ2

1, . . . , κ
2
K) denote the collections of the hyper-parameters at the second and third

stage of the hierarchical prior where ζk = (ζ1,k, . . . , ζN,k), ζℓ,k = (ζ(1)
ℓ,k , . . ., ζ

(d)
ℓ,k , . . . , ζ

(D)
ℓ,k )⊤, λk = (λ1,k, . . . , λN,k),

λℓ,k = (λ(1)
ℓ,1,k, . . . , λ

(d)
ℓ,m,k, . . . , λ

(D)
ℓ,M,k)⊤, wk = (w1,k, . . . ,wN,k), wℓ,k = (w(1)

ℓ,1,1,k, . . . ,w(d)
ℓ,m, jm,k

, . . . , w(D)
ℓ,M,pM ,k

)⊤, and
κ2

k = (κ2
1,k, . . . , κ

2
N,k), κ2

ℓ,k = (κ2ℓ,1,k, . . . , κ
2
ℓ,M,k)⊤.

The MCMC sampler proposed in the next section relies on the following equivalent representation of the
MSTR model.

Proposition 2. The model in (1) can be written as:

yℓ,t = β
(d)
ℓ,m, jm

(st)⊤Ψ
(d)
ℓ,m, jm,t

(st) + R(d)
ℓ,m, jm,t

(st) + R(d)
ℓ,t (st) + σ2

ℓ (st)εℓ,t,

ℓ ∈ {1, . . . ,N}, where the residual terms R(d)
ℓ,t (st) and R(d)

ℓ,m, jm,t
(st) and the auxiliary covariate vector Ψ(d)

ℓ,m, jm,t
(st)

are defined as follows:

R(d)
ℓ,t (st) =

∑
d′,d

〈
B(d′)
ℓ,1 (st) ◦ · · · ◦ B(d′)

ℓ,M(st), Xt

〉
, R(d)

ℓ,m, jm,t
(st) =

〈
(B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,M(st))− jm , (Xt)− jm

〉
,

Ψ
(d)
ℓ,m, jm,t

(st) = vec
(
(B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,m−1(st) ◦ B(d)
ℓ,m+1(st) ◦ · · · ◦ B(d)

ℓ,M(st) ◦ Xt) j̃m

)
with B(d)

ℓ,m(st) =
∑K

k=1 B(d)
ℓ,m,kI(st = k) a Markov-switching tensor coefficient and (A)− jm the tensor obtained

removing from A the jmth slice along the mode m.
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yt−1 yt . . .yt−2. . .

st−1 st . . .st−2. . .

pν β σ2µσµ

γ κ2

wζ τ

λ(aλ, bλ)

α (aτ, bτ)

(aσ, bσ)

(aκ, bκ)

Fig. 2: Directed Acyclic Graph of the Bayesian Markov-switching Tensor Regression model. It exhibits the hierarchical structure of the
observations yt (boxes), the latent state variables st (grey circles), the parameters β(d)

ℓ,m, jm ,k
, µℓ,k , pk and σ2

ℓ,k , the hyper-parameters of the

first stage γ(d)
ℓ,m, jm ,k

and κ2
ℓ,m,k , the second stage τℓ,k , ζ(d)

ℓ,m,k and w(d)
ℓ,m, jm ,k

and the third stage λ(d)
ℓ,m,k (white circles). The directed arrows show

the conditional independence structure of the model.

3.2. Sampling method
Let θ = (θ1, . . . , θK) be the collection of the state-specific parameters θk = (βk, γk, µk, σ2

k , pk, τk, ζk, wk,
λk, κ

2
k) and denote with y = (y1, . . . , yT ), X = (X1, . . . , XT ) and s = (s1, . . . , sT )⊤ the collection of response

variables, covariates and state variables, respectively.
Since the joint posterior p(θ|y,X) is not tractable, we follow a data augmentation strategy and introduce

the joint posterior p(θ, s|y,X). We sample groups of parameters and latent variables from their full conditional
distributions, following a block Gibbs scheme. Our sampling strategy deviates in three ways from the one in
[32]. First, since we include the global shrinkage parameter τ not only in the prior for γ but also in the prior for
β, the full conditional distribution of τ depends on the tensor coefficients. Second, we integrate out γ from the
full conditional of β to allow β to depend directly on the observed data. The resulting collapsed Gibbs sampler
allows us to achieve exact sampling for β and γ and to improve the sampler efficiency [33]. Third, we apply
random scan Gibbs to increase the efficiency of the sampler [47].

At the first step of the Gibbs sampler, the Bℓ,ks and the PARAFAC margins are drawn from their full
conditional distributions. The back-fitting sampling strategy allows sampling from tractable distributions, i.e.
conditionally normal distributions, and for splitting the parameter vector into blocks.

At every iteration of the sampling algorithm, we randomly select a subset of component indices {d1, . . . , dD∗ }

of fixed size D∗ from the set {1, 2, . . . ,D}, where D∗ < D and a subset of mode indices {m1, . . . ,mM∗ } of fixed
size M∗, where M∗ < M from the set {1, 2, . . . ,M}. For k ∈ {1, . . . ,K} and ℓ ∈ {1, . . . ,N}, all the elements of
Bℓ,k and the PARAFAC margins γ(d)

ℓ,m, jm,k
are sampled from their full conditional distributions:

1. Draw β(d)
ℓ,m, jm,k

from f (β(d)
ℓ,m, jm,k

|y, X, µℓ,k,βℓ,− jm,k, σ
2
ℓ,k, τℓ,k, ζ

(d)
ℓ,k ,w

(d)
ℓ,m, jm,k

, κ2ℓ,m,k) for d ∈ {d1, . . . , dD∗ } and
m ∈ {m1, . . . ,mM∗ } which is a multivariate normal distribution, where the {d1, . . . , dD∗ } and {m1, . . . ,mM∗ }

have been randomly selected according to Algorithm 1.

2. Draw γ(d)
ℓ,m, jm,k

from f (γ(d)
ℓ,m, jm,k

|β(d)
m, jm
, τℓ,k, ζ

(d)
ℓ,k ,w

(d)
ℓ,m, jm,k

, κ2ℓ,m,k), which is a univariate normal distribution.

Let us denote the Inverse Gamma and the Generalized Inverse Gaussian distributions with IG and GIG,
respectively. The Gibbs updates for the remaining parameters and hyper-parameters are:

3. Draw ζ(d)
ℓ,m,k from the GIG distribution f (ζ(d)

ℓ,m,k |β
(d)
ℓ,k ,γ

(d)
ℓ,k , κ

2
ℓ,k,w

(d)
ℓ,k).

4. Draw τℓ,k from the GIG distribution f (τℓ,k |βℓ,k,γℓ,k, κ2
ℓ,k, ζℓ,k,wℓ,k).

5. Draw λ(d)
ℓ,m,k from f (λ(d)

ℓ,m,k |γ
(d)
ℓ,m,k, τℓ,k, ζ

(d)
ℓ,k ) which is a Gamma distribution.
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6. Draw w(d)
ℓ,m, jm,k

from the GIG distribution f (w(d)
ℓ,m, jm,k

|γ(d)
ℓ,m, jm,k

, λ(d)
ℓ,m,k, τℓ,k, ζ

(d)
ℓ,k ).

7. Draw κ2ℓ,m,k from the GIG distribution f (κ2ℓ,m,k |βℓ,m,k,γℓ,m,k, τℓ,k, ζℓ,k).

8. Draw σ2
ℓ,k from the IG distribution f (σ2

ℓ,k |y, X, µℓ,k,βℓ,k).

9. Draw µℓ,k from the Gaussian distribution f (µℓ,k |y, X,βℓ,k, σ2
ℓ,k).

10. Draw transition probabilities (p1,k, . . . , pK,k) from the Dirichlet distribution f (p1,k, . . . , pK,k |s).

Regarding the hidden states, we apply a Forward-Filtering Backward-Sampling (FFBS) strategy.

11. Compute iteratively the vector of smoothed probabilities ξt|T = p(st |θ, y, X) by using the Hamilton filter
recursions, and draw the state vector st from the multinomial distributionM(1, ξt|T ).

The derivation of the full conditional distributions for the parameters and the FFBS recursions can be found in
Appendix B.

The current implementation is a variation of the usual Gibbs with a random scan. More concretely, consider
that of interest is the posterior distribution π(θ) where θ ∈ Rn, but at each iteration, only a random subset of
fixed size, say n∗ ≤ n, of the parameter vector, is updated. Moreover, every index set of size n∗ has an equal
chance of being selected. We describe in Algorithm 1 the steps of the sampler, which we call a Random Partial
Scan Gibbs (RPSG).

Algorithm 1 The steps in a Random Partial Scan Gibbs

S1: Draw uniformly J ⊂ {1, . . . , n} a random set of distinct indices of size n∗ ≤ n so that each subset has an
equal chance of being selected.
S2: If J = ( j1, . . . , jn∗ ), update θJ = (θ j1 , θ j2 , . . . , θ jn∗ ) using a random scan and leave the other components
of θ unchanged.

The transition kernel of the RPSG satisfies the detailed balance condition, hence:

Remark 1. The chain generated by the RPSG sampler described in Algorithm 1 is an ergodic Markov chain
with stationary distribution π.

To illustrate the performance of our proposed algorithm for tensor regression, we carried out an extensive
simulation study for both simple and Markov Switching tensor regression for different specifications of the
number of regimes and of the PARAFAC rank (see Appendix C in the Supplementary for further details). We
study the proposed MCMC algorithm’s efficiency by examining the MCMC chain empirical autocorrelation
function (ACF) and the mean square error (MSE) of the true and sampled coefficient values. The regression
model and the MCMC algorithm provide reasonably accurate coefficient estimates (posterior mean), and the
regimes are successfully recovered by the maximum a posteriori estimates in different experimental settings.

The inferential performances are similar when D ∈ {3, 5, 7}. Additional simulations are carried out as
robustness checks in two directions. First, the true coefficients are contaminated with white noise in such a
way that the ranks are considered full for all different coefficients. The MCMC procedure can recover the
patterns of the true coefficients reasonably well for all values of D ∈ {3, 5, 7} (Fig. C.5 in Appendix C).
Second, we evaluate the performances of different models with a different number of regimes, K ∈ {2, 3}, using
Watanabe-Akaike Information Criterion (WAIC). We report the results in Table C.4. WAIC also confirms the
simulation results that when K is fixed, varying D doesn’t change the score too much. When D is fixed, a
smaller K does help improve the model performance with a much lower WAIC score.

4. Empirical application

We test the validity of our tensor regression model using two real-world applications. In particular, we show
through the applications that our tensor regression model: i) outperforms the competing estimation methods
(ordinary least squares and linear LASSO) in terms of both in-sample and out-of-sample fitting; ii) captures the
structural / regime changes in the data by taking advantage of the latent Markov-switching process.

7



4.1. Volatility index of the US market
In the first application, we study the relationship between the daily volatility index of the US market, also

known as VIX and the crude oil ETF volatility index (OVX) with several other financial indicators. This is
motivated by the fact that VIX has been recognized as the key benchmark index for measuring the market’s
expectations and sentiments, and predicting VIX is a crucial step for traders and investors when developing
their trading strategies. In this regard, [16] studied the long-range dependence in the VIX data by including a
vector of the average of the logarithm of VIX for the last h ∈ {1, 5, 10, 22, 66} days (to mirror daily, weekly,
bi-weekly, monthly and quarterly component) in a family of heterogeneous autoregressive (HAR) processes.

We follow similar strategy as [16] in forecasting VIX, but adapt it into a multiple-equation tensor regression
framework, where we regress VIX on OVX (11) and vice versa (12) together with other covariates: the h
day log-return for S&P 500, exchange rate (proxy by US dollar index), spot price of WTI crude oil for h ∈
{1, . . . , 44}. To take advantage of the tensor structure, we construct the covariates for each response variable as
a 4×44 matrix, which implies that the coefficient to be estimated is also a 4×44 matrix. The model specification
for the two variables y1,t = VIXt and y2,t = OVXt is:

VIXt = µ1(st) +
〈
B1(st),


SPt−1 . . . SPt−h . . . SPt−44
ERt−1 . . . ERt−h . . . ERt−44
Oilt−1 . . . Oilt−h . . . Oilt−44

OVXt−1 . . . OVXt−h . . . OVXt−44


〉
+ σ1(st)ε1t, (11)

OVXt = µ2(st) +
〈
B2(st),


SPt−1 . . . SPt−h . . . SPt−44
ERt−1 . . . ERt−h . . . ERt−44
Oilt−1 . . . Oilt−h . . . Oilt−44
VIXt−1 . . . VIXt−h . . . VIXt−44


〉
+ σ2(st)ε2t. (12)

To guide the selection of the model with the best in-sample fitting and out-of-sample forecasting among
all realistic combinations of the number of regimes and the number of PARAFAC components, we compute
the Watanabe-Akaike Information Criterion (WAIC, 39). WAIC is more appealing than AIC and DIC since it
accounts for model prediction performances and is well suited for a Bayesian setup as it can be easily computed
using the MCMC samples from the posterior [18]. The WAIC is defined as WAIC = −2(lppd − pWAIC) where
lppd denotes the logarithm of the pointwise predictive density and pWAIC is the correction term for the effective
number of parameters which adjusts for model complexity.

In Table 1, we report the WAIC for models with different values of K and D together with the Mean Square
Error (MSE) and Mean Absolute Error (MAE) for the in- and out-of-sample prediction and different hori-
zons of 1 and 5 days. Furthermore, we report the 95% credible intervals for the regime-specific intercept µℓ,k,
ℓ ∈ {1, 2} and k ∈ {1, 2, 3}. In the estimation the constraint µ2,1 < µ2,2 < · · · < µ2,K has been assumed in order
to achieve identification. The main findings can be summarized as follows. Tensor models (MSTR(K,D) and
TR(D)=MSTR(1,D) in Table 1) consistently outperform the Least Squares (LS) and linear LASSO across al-
most all measures. Markov-switching Tensor Regressions MSTR(K,D) outperform simple Tensor Regressions
TR(D). We show the in-sample fitting results of an MSTR model (MSTR(2, 2)) against LS and LASSO in
Fig. 3. See also the comparison of in-sample fitting of models MSTR(3, 2) and MSTR(3, 3) in the supplement.
The in-sample fitting of the LS and Linear LASSO regressions fails to capture the structural changes in the
series of VIX and OVX. However, these structural changes are successfully captured by an MSTR, for which
we assumed two possible regimes represent high and low volatility levels. Furthermore, the three-regime and
three-component model MSTR(3, 3) has the best in-sample performance. In contrast, the two-regime model
MSTR(2, 3) outperforms the best out-of-sample at the two horizons considered.

In addition, the regime separation is better supported by models with two regimes, MSTR(2, 2) and
MSTR(2, 3), than in the three-regime models, MSTR(3, 2) and MSTR(3, 3). Note that the posterior credi-
ble intervals of the second equation intercept do not overlap across the two regimes (boldfaced intervals in
Table 1). Between the two-regime models, we chose MSTR(2, 2) for the data analysis because it is preferred
by the WAIC criterion over MSTR(2, 3). Fig. 3 shows that the MSTR(2, 2) identified two regimes with dis-
tinctive regime-specific intercepts. Regime 2, representing a high level of Oil volatility, has a higher intercept
value than Regime 1, which represents a low level of Oil volatility. The regime separation can be further de-
scribed by inspecting the estimated effects of h-day log-return of oil prices and S&P 500 on VIX (blue dots)
and OVX (red dots), respectively, in Fig. 4. The dots in the plots correspond to the values of parameters in the
low-volatility (st = 1) and in the high-volatility (st = 2) regimes. The 90% HPD regions (grey ellipses) provide
evidence of coefficient heterogeneity across regimes (asymmetric effects), equations (market asymmetry) and
lags (long-term effects).

Regarding the asymmetric effects, we found evidence of the limited impact of the h-day oil and S&P 500
log-returns on both VIX and OVX in the low-volatility regime.

The values of coefficients are mostly centred around zero in this regime. As for the market asymmetry, the
returns on oil have a stronger effect on OVX than on VIX in the high-volatility regime.
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Table 1: Model Comparison for Financial Application. The table compares WAIC, MSE, MAE and credible intervals of the intercepts
between models and regression methods with a different number of hidden regimes (K) and a different number of components (D). For
MSE and MAE, we report the results for both in-sample and out-of-sample fitting in panel (a) (with forecasting horizons h = 1 and
h = 5 days ahead). For the equation- and regime-specific intercepts µℓ,k , we report their median µ̂ℓ,k and their 2.5% and 97.5% quantiles
[µ
ℓ,k
, µ̄ℓ,k] in panel (b). Note: MSTR(K,D) denotes the Markov-Switching Tensor Regression, TR(D) = MS TR(1,D) the Tensor Regression,

LS and LASSO the Least Squares and LASSO, respectively.

(a) Predictive ability

Models WAIC

In-sample Out-of-sample

MS E MAE
h = 1 h = 5

MS E MAE MS E MAE

TR(2) 3231.06 0.3097 0.4324 0.2540 0.4232 0.3581 0.5182

MSTR(2, 2) 1907.28 0.0892 0.2376 0.1409 0.3342 0.1379 0.3063

MS TR(3, 2) 911.11 0.0339 0.1447 0.3199 0.4024 0.1976 0.3388

TR(3) 3282.48 0.3445 0.4534 0.2172 0.4155 0.2905 0.4751

MSTR(2, 3) 2347.39 0.1019 0.2505 0.0939 0.2641 0.0659 0.2132

MSTR(3, 3) 518.13 0.0272 0.1221 0.9328 0.9398 0.3471 0.5236

LS − 0.3049 0.4266 0.1945 0.3474 0.3668 0.5211

LAS S O − 0.4207 0.5259 0.5199 0.6363 0.6940 0.7589

(b) Intercept estimates and credible intervals

(µ̂1,1, µ̂2,1) (µ̂1,2, µ̂2,2) (µ̂1,3, µ̂2,3)

Models ([µ
1,1
, µ̄1,1], [µ

2,1
, µ̄2,1]) ([µ

1,2
, µ̄1,2], [µ

2,2
, µ̄2,2]) ([µ

1,3
, µ̄1,3], [µ

2,3
, µ̄2,3])

TR(2)
(0.0016,−4.4 × 10−05)

([−0.0452, 0.0478], [−0.0295, 0.0308])
− −

MSTR(2, 2) (−0.3100, 0.0086)
([−0.3304,−0.2900], [-0.0438, 0.0595])

(0.4157, 0.3938)
([0.2660, 0.5520], [0.2855, 0.5268])

−

MS TR(3, 2)
(−0.3550,−0.0225)

([−0.3945, 0.2138], [−0.0635, 0.0145])

(−0.1373, 0.0026)
([−0.3744, 0.2609], [−0.0267, 0.0327])

(0.0988, 0.0268)
([−0.3633, 0.3168], [−0.0056, 0.0797])

TR(3)
(0.0003,−0.0006)

([−0.0532, 0.0506], [−0.0292, 0.0307])
− −

MSTR(2, 3) (−0.2285, 0.0050)
([−0.2545,−0.2029], [-0.0227, 0.0330])

(−0.0952, 0.4036)
([−0.2331, 0.0261], [0.1849 0.5653])

−

MSTR(3, 3) (−0.0125,−0.0132)
([−0.1344, 0.0920], [-0.1179, -0.0655])

(−0.0258, 0.0024)
([−0.2565, 0.0504], [-0.0216, 0.0262])

(−0.0478, 0.0185)
([−0.2560, 0.0552], [-0.0050, 0.0642])

There is also strong evidence of non-negligible long-term effects of oil prices (dark red points) on oil
volatility, which is aligned with previous findings [3, 15]. The returns on the S&P 500 have a very limited
effect on VIX in the low-volatility regime. In contrast, the effects of returns at all lags are more substantial
during high-volatility periods. The impact of S&P 500 on OVX follows a similar pattern; the coefficients with
medium lags tend to have a larger effect than lower and higher lags. From the shape of the ellipses, we can tell
that the coefficients are mostly uncorrelated across regimes, with fewer coefficients showing small positive or
negative correlations. The coefficient posterior variance in the low-volatility regime is generally larger than in
the high-volatility.

4.2. Oil prices on stock returns
For the second application, we extend our matrix-variate tensor regression model to a 3-mode tensor re-

gression model by constructing the covariates Xt as a three-dimensional array for each observation. Therefore,
the coefficients Bℓ also form a three-dimensional array with the same size as the covariates. In this application,
we contribute to the debate on the interdependence between financial and oil markets [see, e.g., 40, 41] and
examine the impact of oil price volatility on the stock market returns (S&P 500) at an aggregate level and on
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(a) LS and LASSO (b) MSTR

Fig. 3: Left: In-sample fitting for Least Squares (orange dashed) and LASSO (blue dashed). Right: In-sample fitting of the Markov-
Switching Tensor Regression model MSTR(2, 2) (orange dashed) and estimated hidden states (red solid). The green solid line represents
the VIX and VOX indexes (top and bottom).

(a) VIX (b) OVX

Fig. 4: Markov-switching Tensor Regression model MSTR(2, 2). Effects of h-day Oil (top) and S&P 500 (bottom) log-returns on VIX
(left) and OVX (right) for h ∈ {1, . . . , 44}. Lighter and darker colors represent smaller and larger k, respectively. 90% Highest Posterior
Density regions (gray ellipses) are plotted only for the coefficients which exhibit asymmetric effects across regimes (HPD ellipse does not
intersect the 45◦ line).
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the financial sector, energy sector and other sectors of S&P 500 at the disaggregate level. In particular, we
classified the oil price volatility into Good Oil Volatility (GV), where the realized volatility is positive, and Bad
Oil Volatility (BV), where the realized volatility is negative.

Our approach is different from the one in [40] in that we consider a Mixed Data Sampling (MIDAS) [34]
framework by taking advantage of the tensor structure of the covariates. Our tensor regression setting naturally
accommodates the multi-array structure of the covariates when data are sampled at different frequencies with
different lags and reduces the number of parameters to be estimated by shrinking the unimportant parameters
to small values. In particular, the response variable yℓ,t is the 4-week log-return of market ℓ at time t, where ℓ =
1 (S&P 500), 2 (financial sector), 3 (energy sector) and 4 (other S&P 500 sectors). The covariates are sampled
weekly at the 1st week, 2nd week, 3rd week, 4th week before time t, indexed by t−1/4, t−2/4, t−3/4, t−4/4.
Together with the GV and BV, the other covariates are the Exchange Rate Volatility (ER), TED Spread Volatility
(IR) and VIX Index Volatility (VI), following a similar specification as in [40]. We arranged the different
regressors along the rows (first mode) of the tensor covariates, weekly data points for four weeks along the
columns (second mode), proceeding from the most to the least recent as usually done in the mixed-frequency
literature. The weekly data points of the past months are stacked along the third axis (third mode). The MSTR
model for this application is

yℓ,t = µℓ(st) +
4∑

j3=1

〈
Bℓ, j̃3 (st),



GV(4)
t− 1

4− j3+1
GV(4)

t− 1
2− j3+1

GV(4)
t− 3

4− j3+1
GV(4)

t− j3

BV(4)
t− 1

4− j3+1
BV(4)

t− 1
2− j3+1

BV(4)
t− 3

4− j3+1
BV(4)

t− j3

ER(4)
t− 1

4− j3+1
ER(4)

t− 1
2− j3+1

ER(4)
t− 3

4− j3+1
ER(4)

t− j3

IR(4)
t− 1

4− j3+1
IR(4)

t− 1
2− j3+1

IR(4)
t− 3

4− j3+1
IR(4)

t− j3

VI(4)
t− 1

4− j3+1
VI(4)

t− 1
2− j3+1

VI(4)
t− 3

4− j3+1
VI(4)

t− j3


〉
+ σℓ(st)εℓ,t, (13)

where j̃3 = {( j1, j2, j3), jh ∈ {1, . . . , ph},∀h , 3} and Bℓ, j̃3 (st) denotes the j3th slice of tensor coefficients Bℓ(st)
along the third mode. The conditional mean of the model in (13) is given as the sum over slices corresponding
to different temporal lags (third mode).

Fig. D.4 of the Supplement shows the in-sample fitting of Least Squares and Linear LASSO (left column)
and the in-sample fitting of MSTR (right column). Notably, Least Squares and linear LASSO fail to capture the
volatility changes in the market return. In contrast, the MSTR can identify the most relevant episodes of market
disruptions at both aggregate and disaggregate levels. For the aggregate analysis, when S&P 500 is used as the
dependent variable, MSTR can identify the biggest disruption in the financial market in recent years, the 2008
global financial crisis.

For the disaggregated S&P 500 analysis (bottom plot and Fig. D.4 of the Supplement), when sector indices
are used as dependent variables, MSTR can identify more episodes of market disruptions, including the 1997
Asia financial crisis, 2001 9/11 terrorist attack and 2002 corporate scandals and dot-com bubble together with
the 2008 global financial crisis. The fact that MSTR can capture more structural changes at a disaggregated
level can be largely attributed to the heterogeneity between different sectors. Thus, MSTR can also be an
effective data integration tool.

Fig. 5 shows the effects of GV and BV on financial and energy sector log-returns (see also Fig. D.5 of the
Supplement). We use different symbols to represent the weekly data sampled at different weeks for different
lags h = {1, 2, 3, 4}, with •: t − (1 + 4(h − 1))/4, ✚: t − 2(1 + 4(h − 1))/4, ◆: t − 3(1 + 4(h − 1))/4 and
⋆ : t − 4(1 + 4(h − 1))/4. Lighter (darker) blue represents lower (higher) lag h. Coefficients with 90% HPD
regions (grey ellipses) indicate large asymmetric effects.

For both aggregate and disaggregate analyses, GV and BV show more pronounced effects in the high-
volatility regime (st = 2) than in the low-volatility regime (st = 1). This confirms the hypothesis of the
financialization of the oil market [40, 41]. The HPD regions are more concentrated along the horizontal axis,
most likely due to the smaller number of observations in regime 2 compared to regime 1. Regarding the long-
term effects, GV has a more considerable impact on the markets at lower lags, while BV has a larger effect at
higher lags. Similar asymmetries in the long and short-term impact have been documented within a univariate
quantile regression framework by [41].

We report the MSE, MAE for the in-sample fitting and the out-of-sample forecasting with prediction hori-
zons of 1-month and 5-month in the lower panel of Table D.1 of the Supplement. Overall, tensor regression
offers competing performances with LS and LASSO, and MSTR performs strictly better in terms of in-sample
fitting and short-term forecasting.

5. Conclusion

In this paper, we propose a new multiple-equation Markov-Switching Tensor Regression Model (MSTR)
to work with high dimensional data where a common hidden Markov chain process introduces dependencies
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(a) Good Oil Volatility (b) Bad Oil Volatility

Fig. 5: The scatter plots show the effects of Good Oil Volatility (left) and Bad Oil Volatility (right) on the financial sector (top) and energy
sector (bottom). Different symbols represent different weeks, with •: t − (1+ 4(h− 1))/4, ✚: t − 2(1+ 4(h− 1))/4, ◆: t − 3(1+ 4(h− 1))/4
and ⋆ : t − 4(1 + 4(h − 1))/4 for h ∈ {1, 2, 3, 4}. Different blue shades represent lags, from order 1 (lighter) to order 4 (darker).

between equations and allows for latent regime changes and dynamic coefficients. A low-rank representation of
the tensor coefficient is used to achieve dimensionality reduction. A hierarchical prior distribution is imposed
to introduce further shrinkage effects in the regression model with many regressors. Multiple prior stages allow
smoothing of the effects of the low-rank representation (soft PARAFAC decomposition). We developed an
MCMC sampler based on Random Partial Scan Gibbs and a back-fitting strategy. We show that the Markov
chain generated by the proposed sampler is stationary and converges to the target distribution. The validity and
efficiency of the sampler are demonstrated using simulations with different settings. We also tested our MSTR
with two real-world applications, where MSTR outperforms the competing algorithms in both in-sample fitting
and out-of-sample forecasting. Moreover, MSTR provides more insight into the possible structural changes
in the parameters by identifying regimes with regime-specific intercepts and variances, which are prevalent in
time series data. The multiple-equation MSTR can also capture the heterogeneity in the data at aggregate and
disaggregate levels to exploit more information in the data.

The proposed model and inference are ready to be used for tensor regression with covariate tensors of order
2 and 3. It can be considered in many other applications where regression on high-dimensional data is needed,
and overparametrization or overfitting issues must be handled.
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A. Proofs

Before proving the main result in Proposition 1, let us recall some useful properties of conditionally inde-
pendent normal random variables.

Remark A.1. Let X|Z1,R1 ∼ N(Z1,R1) and Y |Z2,R2 ∼ N(Z2,R2) be two conditionally independent normal
random variables given Zi,Ri, 1 ≤ i ≤ 2, where Zi|Qi ∼ N(0,Qi), i ∈ {1, 2} are conditionally independent
random variables given Q1,Q2, and Ri,Q j, i, j ∈ {1, 2} are positive, possibly dependent, random variables. It
can be shown that:

1. (marginal normal distribution) the marginal distributions are normal, i.e. X|R1,Q1 ∼ N(0,R1 + Q1) and
Y |R2,Q2 ∼ N(0,R2 + Q2);

2. (marginal independence) the joint marginal fXY |R1,R2,Q1,Q2 (x, y|r1, r2, q1, q2) can be writ-
ten in the integral form

∫ ∫
fX|Z1,R1 (x|z1, r1) fY |Z2,R2 (y|z2, r2) fZ1 |Q1 (z1|q1) fZ2 |Q2 (z2|q2)dz1dz2=∫

fX|Z1,R1 (x|z1, r1) fZ1 |Q1 (z1|q1)dz1
∫

fY |Z2,R2 (y|z2, r2) fZ2 |Q2 (z2|q2)dz2 and thus factorises as follows
fXY |R1,R2,Q1,Q2 (x, y|r1, r2, q1, q2) = fX|R1,Q1 (x|r1, q1) fY |R2,Q2 (y|r2, q2), where fX|R1,Q1 (x|r1, q1) and
fY |R2,Q2 (y|r2, q2) are the densities of the two normal distributions given in 1.

From the two properties above, it follows that

3. By the law of iterated expectations and conditionally independence assumption E[XY]
= E{E[XY |Z1,Z2,R1,R2,Q1,Q2]}= E{E[X|Z1,R1]E[Y |Z2,R2]}= E{E[Z1|Q1]E[Z2|Q2]} = 0;

4. V(XY) = E[X2Y2] − {E[XY]}2= E{E[X2Y2|Z1,Z2,R1,R2,Q1,Q2]}=E{E[X2|Z1,R1,Q1]E[Y2|Z2,R2,Q2]}=
E[(R1 + Z2

1 )(R2 + Z2
2 )] = E{E[R1 + Z2

1 |R1,Q1]E[R2 + Z2
2 |R2,Q2]} which is equal to

E[V(X|R1,Q1)V(Y |R2,Q2)].

We drop the state subscript index k and the equation subscript index ℓ in the following. Let us define
ζ = (ζ(1), . . ., ζ(d), . . . , ζ(D))⊤, w = (w(1)

1,1, . . . ,w(d)
m, jm
, . . . , w(D)

M,pM
)⊤, and κ2 = (κ21, . . . , κ

2
M)⊤. Assume for simplicity

and w.l.o.g. that M = 2. From (4) and (5) the ( j1, . . . , jM)th element of B(d)
1 and B(d)

2 are the two conditionally
independent random variables β(d)

1, j̃
|γ(d), τ, ζ, κ,w ∼ N(γ(d)

1, j1
, τκ21ζ

(d)) and β(d)
2, j̃
|γ(d), τ, ζ, κ,w ∼ N(γ(d)

2, j2
, τκ22ζ

(d)),

respectively. From the PARAFAC representation in (3), the j̃th element of B(d) can be written as the product of
β(d)

1, j̃
and β(d)

2, j̃
with j̃ = ( j1, . . . , jM).

Remark A.2. From (5) and (6) and the assumption in (7), the results in Remark A.1 are applied with X = β(d)
1, j̃

,

Y = β(d)
2, j̃

, Z1 = γ
(d)
1, j1

, Z2 = γ
(d)
2, j2

, R1 = τκ
2
1ζ

(d), R2 = τκ
2
2ζ

(d) Q1 = τζ
(d)w(d)

1, j1
and Q2 = τζ

(d)w(d)
2, j2

to obtain

1. β(d)
1, j̃
|τ, ζ, κ,w ∼ N(0, τζ(d)(κ21+w(d)

1, j1
)) and β(d)

2, j̃
|τ, ζ, κ,w ∼ N(0, τζ(d)(κ22+w(d)

2, j2
)) conditionally independent.

2. V(β(d)
1, j̃
β(d)

2, j̃
|τ, ζ, κ,w) = V(β(d)

1, j̃
|τ, ζ, κ,w)V(β(d)

2, j̃
|τ, ζ, κ,w) a.s. in τ, ζ, κ, w.

Proof of Proposition 1
We denote with β(d)

m, j̃
the j̃th element of B(d)

m , where j̃ = ( j1, . . . , jM) is a multiple-index. The variance of the
coefficient entries of the soft PARAFAC can be written as:

V
(
B j̃

)
= E

{
V

(
B j̃|τ, ζ, κ,w

)}
= E

V

 D∑
d=1

M∏
m=1

β(d)
m, j̃
|τ, ζ, κ,w


 = E

 D∑
d=1

M∏
m=1

V
(
β(d)

m, j̃
|τ, ζ, κ,w

)
= E

 D∑
d=1

M∏
m=1

τζ(d)
(
κ2m + w(d)

m, jm

) = E
{
τM

}
E

 D∑
d=1

(
ζ(d)

)M
 E

 M∏
m=1

(
κ2m + w(d)

m, jm

)
=
Γ(aτ + M)
Γ(aτ)bM

τ

D
M−1∏
r=0

α/D + r
α + r

aκ
bκ
+

2b2
λ

(aλ − 1)(aλ − 2)

M

. (A.1)

From the first line to the second line of (A.1) we used null mean and the conditional independence properties
of β(d)

m, j̃
across d and m from 1) in Remark A.2. It follows that

∏M
m=1 β

(d)
m, j̃

d ∈ {1, . . . ,D} are conditionally
independent across d and that the conditional variance of their sum is the sum of their conditional variances.
Furthermore, from 2) in Remark A.2, the variance of the product of β(d)

m, j̃
is equal to the product of their variances
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since they are conditionally independent and have a null mean. For the variance of the coefficient entries of
hard PARAFAC, κ2m = 0, thus

Vhard
(
B j̃

)
=
Γ(aτ + M)
Γ(aτ)bM

τ

D
M−1∏
r=0

α/D + r
α + r

 2b2
λ

(aλ − 1)(aλ − 2)

M

. (A.2)

It is not hard to notice that aκ/bκ is the quantity that drives the additional variability of the soft PARAFAC
by comparing (A.1) and (A.2). The goal is to set V(B j̃) = V∗ and AV = AV∗. By exploiting V(B j̃)/V

hard(B j̃) =
(1 − AV∗)−1 we have

V(B j̃)

Vhard(B j̃)
=

(
aκ
bκ
+

2b2
λ

(aλ−1)(aλ−2)

)2

(
2b2
λ

(aλ−1)(aλ−2)

)2 =

aκ
bκ

(aλ − 1)(aλ − 2)
2b2
λ

+ 1
2

= (1 − AV∗)−1 .

Solving the above equation for aκ/bκ and given aκ/bκ is positive we get

aκ/bκ =
(
(1 − AV∗)−1/2 − 1

)
2b2
λ/((aλ − 1)(aλ − 2)). (A.3)

By setting V(B j̃) = V∗ we have,

2b2
λ/((aλ − 1)(aλ − 2)) = bτ/aτ

√
aτV∗/((aτ + 1)Cζ) − aκ/bκ. (A.4)

Combing (A.3) and (A.4) we obtain aκ/bκ = bτ/aτ
√

aτV∗/((aτ + 1)Cζ)
(
1 −
√

1 − AV∗
)
. □

Proof of Proposition 2
From the ℓth equation of the system (1) and the linearity property of the scalar product for tensors, see [21],

it follows that

⟨Bℓ(st), Xt⟩ =

〈 D∑
d=1

B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,M(st), Xt

〉
=

〈
B(d)
ℓ,m(st), B

(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,m−1(st) ◦ B(d)
ℓ,m+1(st) ◦ · · · ◦ B(d)

ℓ,M(st) ◦ Xt

〉
+

∑
d′,d

〈
B(d′)
ℓ,1 (st) ◦ · · · ◦ B(d′)

ℓ,M(st), Xt

〉
=

pm∑
jm=1

〈
B(d)
ℓ,m, j̃m

(st),
(
B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,m−1(st) ◦ B(d)
ℓ,m+1(st) ◦ · · · ◦ B(d)

ℓ,M(st) ◦ Xt

)
j̃m

〉
+ R(d)

ℓ,t (st)

= β(d)
ℓ,m, jm

(st)⊤vec(B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,m−1(st) ◦ B(d)
ℓ,m+1(st) ◦ · · · ◦ B(d)

ℓ,M(st) ◦ Xt) j̃m + R(d)
ℓ,m, jm,t

(st) + R(d)
ℓ,t (st)

= β(d)
ℓ,m, jm

(st)⊤Ψ
(d)
ℓ,m, jm,t

(st) + R(d)
ℓ,m, jm,t

(st) + R(d)
ℓ,t (st),

where

R(d)
ℓ,t (st) =

∑
d′,d

〈
B(d′)
ℓ,1 (st) ◦ · · · ◦ B(d′)

ℓ,M(st), Xt

〉
,

R(d)
ℓ,m, jm,t

(st) =
∑
j′m, jm

〈
B(d)
ℓ,m, j̃′m

(st),
(
B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,m−1(st) ◦ B(d)
ℓ,m+1(st) ◦ · · · ◦ B(d)

ℓ,M(st) ◦ Xt

)
j̃′m

〉
=

∑
j′m, jm

〈(
B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,M(st)
)

j̃′m
, (Xt) j̃′m

〉
=

〈(
B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,M(st)
)
− jm
, (Xt)− jm

〉
,

Ψ
(d)
ℓ,m, jm,t

(st) = vec
(
B(d)
ℓ,1(st) ◦ · · · ◦ B(d)

ℓ,m−1(st) ◦ B(d)
ℓ,m+1(st) ◦ · · · ◦ B(d)

ℓ,M(st) ◦ Xt

)
j̃m
. □

Proof of Remark 1
To simplify notation, we prove the result for |I|=3, but the result holds in general. Let J = {1, . . . , n} be the

set of parameter indices, suppose 3 distinct components with indices j1, j2, j3 ∈ J are randomly selected to be
updated, and denote with j = { j1, j2, j3} the updated components and with − j = J−{ j1, j2, j3} the components
that are not updated. Furthermore, we assume the order in which the three components are updated is also
random.
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Given that the components in the complement of the set j remain unchanged, we have the transition function

K
(
θ(i+1)|θ(i)

)
=ξ1π

(
θ(i+1)

j1
|θ(i)j2
, θ(i)j3
, θ(i)
− j

)
π
(
θ(i+1)

j2
|θ(i+1)

j1
, θ(i)j3
, θ(i)
− j

)
π
(
θ(i+1)

j3
|θ(i+1)

j1
, θ(i+1)

j2
, θ(i)
− j

)
+ ξ2π

(
θ(i+1)

j1
|θ(i)j2
, θ(i)j3
, θ(i)
− j

)
π
(
θ(i+1)

j3
|θ(i+1)

j1
, θ(i)j2
, θ(i)
− j

)
π
(
θ(i+1)

j2
|θ(i+1)

j1
, θ(i+1)

j3
, θ(i)
− j

)
+ ξ3π

(
θ(i+1)

j2
|θ(i)j1
, θ(i)j3
, θ(i)
− j

)
π
(
θ(i+1)

j1
|θ(i+1)

j2
, θ(i)j3
, θ(i)
− j

)
π
(
θ(i+1)

j3
|θ(i+1)

j1
, θ(i+1)

j2
, θ(i)
− j

)
+ ξ4π

(
θ(i+1)

j2
|θ(i)j1
, θ(i)j3
, θ(i)
− j

)
π
(
θ(i+1)

j3
|θ(i+1)

j2
, θ(i)j1
, θ(i)
− j

)
π
(
θ(i+1)

j1
|θ(i+1)

j2
, θ(i+1)

j3
, θ(i)
− j

)
+ ξ5π

(
θ(i+1)

j3
|θ(i)j1
, θ(i)j2
, θ(i)
− j

)
π
(
θ(i+1)

j1
|θ(i+1)

j3
, θ(i)j2
, θ(i)
− j

)
π
(
θ(i+1)

j2
|θ(i+1)

j1
, θ(i+1)

j3
, θ(i)
− j

)
+ ξ6π

(
θ(i+1)

j3
|θ(i)j1
, θ(i)j2
, θ(i)
− j

)
π
(
θ(i+1)

j2
|θ(i+1)

j3
, θ(i)j1
, θ(i)
− j

)
π
(
θ(i+1)

j1
|θ(i+1)

j2
, θ(i+1)

j3
, θ(i)
− j

)
,

where ξi, i ∈ {1, . . . , 6} are the probabilities of all possible orders in which d j could be updated, and
∑6

i=1 ξi = 1.
To save space, we ignore θ(i)

− j from the equations for the rest of the proof. For the detailed balance condition,

we must show K
(
θ(i+1)|θ(i)

)
π
(
θ(i)

)
= K

(
θ(i)|θ(i+1)

)
π
(
θ(i+1)

)
. The left side term can be expanded into:

K
(
θ(i+1)|θ(i)

)
π
(
θ(i)

)
=

{
ξ1π

(
θ(i+1)

j1
|θ(i)j2
, θ(i)j3

)
π
(
θ(i+1)

j2
|θ(i+1)

j1
, θ(i)j3

)
π
(
θ(i+1)

j3
|θ(i+1)

j1
, θ(i+1)

j2

)
+

(
ξ2π

(
θ(i+1)

j1
|θ(i)j2
, θ(i)j3

)
π
(
θ(i+1)

j3
|θ(i+1)

j1
, θ(i)j2

)
+ ξ5π

(
θ(i+1)

j3
|θ(i)j1
, θ(i)j2

)
π
(
θ(i+1)

j1
|θ(i+1)

j3
, θ(i)j2

))
π
(
θ(i+1)

j2
|θ(i+1)

j1
, θ(i+1)

j3

)
+

(
ξ4π

(
θ(i+1)

j2
|θ(i)j1
, θ(i)j3

)
π
(
θ(i+1)

j3
|θ(i+1)

j2
, θ(i)j1

)
+ ξ6π

(
θ(i+1)

j3
|θ(i)j1
, θ(i)j2

)
π
(
θ(i+1)

j2
|θ(i+1)

j3
, θ(i)j1

))
π
(
θ(i+1)

j1
|θ(i+1)

j2
, θ(i+1)

j3

)
+ ξ3π

(
θ(i+1)

j2
|θ(i)j1
, θ(i)j3

)
π
(
θ(i+1)

j1
|θ(i+1)

j2
, θ(i)j3

)
π
(
θ(i+1)

j3
|θ(i+1)

j1
, θ(i+1)

j2

)}
π
(
θ(i)

)
,

where θ(i) =
(
θ(i)j1
, θ(i)j2
, θ(i)j3

)
and θ(i+1) =

(
θ(i+1)

j1
, θ(i+1)

j2
, θ(i+1)

j3

)
. Equivalently

K
(
θ(i+1)|θ(i)

)
π
(
θ(i)

)
= π

(
θ(i+1)

j1
, θ(i+1)

j2
, θ(i+1)

j3

) { ξ1

π
(
θ(i+1)

j1
, θ(i+1)

j2

) π (θ(i+1)
j1
, θ(i)j2
, θ(i)j3

)
π
(
θ(i)j2
, θ(i)j3

) π
(
θ(i+1)

j1
, θ(i+1)

j2
, θ(i)j3

)
π
(
θ(i+1)

j1
, θ(i)j3

) (A.5)

+
ξ2

π
(
θ(i+1)

j1
, θ(i+1)

j3

) π (θ(i+1)
j1
, θ(i)j2
, θ(i)j3

)
π
(
θ(i)j2
, θ(i)j3

) π
(
θ(i+1)

j1
, θ(i)j2
, θ(i+1)

j3

)
π
(
θ(i+1)

j1
, θ(i)j2

) +
ξ3

π
(
θ(i+1)

j1
, θ(i+1)

j2

) π (θ(i)j1
, θ(i+1)

j2
, θ(i)j3

)
π
(
θ(i)j1
, θ(i)j3

) π
(
θ(i+1)

j1
, θ(i+1)

j2
, θ(i)j3

)
π
(
θ(i+1)

j2
, θ(i)j3

)
+

ξ4

π
(
θ(i+1)

j2
, θ(i+1)

j3

) π (θ(i)j1
, θ(i+1)

j2
, θ(i)j3

)
π
(
θ(i)j1
, θ(i)j3

) π
(
θ(i)j1
, θ(i+1)

j2
, θ(i+1)

j3

)
π
(
θ(i)j1
, θ(i+1)

j2

) +
ξ5

π
(
θ(i+1)

j1
, θ(i+1)

j3

) π (θ(i)j1
, θ(i)j2
, θ(i+1)

j3

)
π
(
θ(i)j1
, θ(i)j2

) π
(
θ(i+1)

j1
, θ(i)j2
, θ(i+1)

j3

)
π
(
θ(i)j2
, θ(i+1)

j3

)
+

ξ6

π
(
θ(i+1)

j2
, θ(i+1)

j3

) π (θ(i)j1
, θ(i)j2
, θ(i+1)

j3

)
π
(
θ(i)j1
, θ(i)j2

) π
(
θ(i)j1
, θ(i+1)

j2
, θ(i+1)

j3

)
π
(
θ(i)j1
, θ(i+1)

j3

) }
π
(
θ(i)

)
.

The expression in (A.5) is symmetric in θ(i) and θ(i+1) when ξ1 = ξ2 = ξ3 = ξ4 = ξ5 = ξ6. This proof can be
easily generalized to an arbitrary randomly selected number of components as long as j ⊂ {1, . . . , n}. □

B. Full conditional derivations

B.1. Full conditional distribution of the hidden state variables

A multi-move sampling is applied to sample from the joint posterior distribution of the hidden state vari-
ables. We apply forward filtering and backward sampling [17]. Let us introduce the set of allocation variables
ξt = (ξ1,t, . . . , ξK,t), with ξk,t = I(st = k). Using dynamic factorization, the full conditional distribution of the
hidden state is

p(s1, . . . , sT |y,X,β,σ2,µ,p) ∝
T∏

t=1

p(yt |Xt, B(st),σ2(st))
K∏

k=1

K∏
l=1

pξk,tξl,t−1

l,k . (B.1)

B.2. Full conditional distribution of the transition probability

p
(
(p1,i, . . . , pK,i)|s

)
∝

T∏
t=1

K∏
l=1

pξltξi,t−1

l,i

K∏
l=1

pνl−1
l,i ∝

K∏
l=1

p
∑T

t=1 ξl,tξi,t−1+νl−1
i,l , (B.2)

which is proportional to Dirichlet distributionDir(ν̄1, . . . , ν̄K), where ν̄l = νl +
∑T

t=1 ξl,tξi,t−1.
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B.3. Full conditional distribution of the state-specific parameters
Given the conditional independence assumption, we drop the state subscript index k and equation subscript

index ℓ for simplicity in the following. From the prior for B(d)
m , we have β(d)

m, jm
∼ Nqm (γ(d)

m, jm
ιqm , τκ

2
mζ

(d)Iqm ). The
posterior of the unknowns of the model is given by

p(β(d)
m, jm
, γ(d)

m, jm
, σ2, µ, τ, ζ(d), λ(d)

m , κ
2
m,w

(d)
m, jm
| y, X). (B.3)

We adopt an MCMC procedure based on Gibbs sampling to generate the unknowns from 3 blocks.

Block 1: Sampling ζ(d) and τ from p(ζ(d), τ | β,γ, κ,w)
We first sample ζ from the joint posterior by integrating out τ

p (ζ | β,γ, κ,w) ∝ π (ζ) p
(
β,γ | κ,w, ζ(d)

)
= π (ζ)

∫
R+

p (β | γ, κ, τ) p (γ | w, τ) π(τ)dτ

=

D∏
d=1

ζ(d)
α
D−1

∫
R+

 D∏
d=1

M∏
m=1

pm∏
jm=1

(
τζ(d)κ2m

)− qm
2 exp

{
−

1
2

(
β(d)

m, jm
− γ(d)

m, jm
ιqm

)⊤ (
τζ(d)κ2m

)−1 (
β(d)

m, jm
− γ(d)

m, jm
ιqm

)}

·
(
τζ(d)w(d)

m, jm

)− 1
2 exp

−1
2

γ(d)
m, jm

2

τζ(d)w(d)
m, jm


 τaτ−1e−bττdτ

∝

D∏
d=1

ζ(d)
α
D−1

∫
R+

 D∏
d=1

(
τζ(d)

)−∑M
m=1 pm (qm+1)

2 exp
{
−

1
2τζ(d) Cd

} τaτ−1e−bττdτ,

where we defined Cd =
∑M

m=1
∑pm

jm=1

(
||β(d)

m, jm
− γ(d)

m, jm
ιqm ||

2/κ2m + γ
(d)
m, jm

2
/w(d)

m, jm

)
and || · || denotes the Euclidean

norm. Let I0 =
∑M

m=1 pm(qm + 1) = M
∏M

m=1 pm +
∑M

m=1 pm then

p (ζ | β,γ, κ,w) ∝
D∏

d=1

ζ(d)
α
D−

I0
2 −1

∫
R+
τaτ−

DI0
2 −1 exp

−bττ −
∑D

d=1 Cd

2τζ(d)

 dτ.

By definition,
∑D

d=1 ζ
(d) = 1 which yields

∑D
d=1(bττζ(d)) = bττ

∑D
d=1 ζ

(d) = bττ, moreover, by letting aτ = α
we obtain

p (ζ | β,γ, κ,w) ∝
∫
R+

 D∏
d=1

ζ(d)
α
D−

I0
2 −1

 τ(α− DI0
2 )−1 exp

−1
2

D∑
d=1

(
Cd

τζ(d) + 2bττζ(d)
) dτ. (B.4)

We recognize from (B.4) that the kernel of ϕ(d) = τζ(d) is a Generalized Inverse Gaussian distribution ϕ(d) ∼

GiG (α/D − I0/2, 2bτ,Cd). We then obtain ζ(d) by normalizing ϕ(d) as follows: ζ(d) = ϕ(d)/
∑D

d=1 ϕ
(d) [see, e.g.,

8].
The full conditional of τ can be derived as follows

p (τ | β,γ, ζ, κ,w) ∝ p (β|γ, τ, ζ, κ,w) p
(
γ|τ, ζ(d),w

)
p(τ)

= τaτ−1e−bττ
D∏

d=1

M∏
m=1

pm∏
jm=1

(
τζ(d)

)− qm+1
2 exp

−||β
(d)
m, jm
− γ(d)

m, jm
ιqm ||

2

2τζ(d)κ2m

 (
w(d)

m, jm

)− 1
2 exp

−1
2

γ(d)
m, jm

2

τζ(d)w(d)
m, jm


∝ τaτ−

DI0
2 −1e−bττ

D∏
d=1

exp

− 1
2τζ(d)

M∑
m=1

pm∑
jm=1

||β(d)
m, jm
− γ(d)

m, jm
ιqm ||

2

κ2m

 = τaτ−
DI0

2 −1 exp

−1
2

 D∑
d=1

Cd

τζ(d) + 2bττ


 .

Therefore, the full conditional of τ is also a Generalized Inverse Gaussian distribution

p (τ | β,γ, ζ, κ,w) ∝ GiG

aτ − DI0/2, 2bτ,
D∑

d=1

Cd/ζ
(d)

 .
Block 2: Sampling λ(d)

m and w(d)
m, jm

from p(λ(d)
m ,w

(d)
m, jm
|γ(d)

m, jm
, τ, ζ(d))

Notice that by the construction of the prior distributions, γ(d)
m, jm

follows a double exponential distribution

given λ(d)
m , τ, ζ(d), that is γ(d)

m, jm
∼ DE

(
0,

√
τζ(d)/λ(d)

m

)
. The full conditional of λ(d)

m can be written as

p
(
λ(d)

m | γ
(d)
m, jm
, τ, ζ(d)

)
∝ π(λ(d)

m )p
(
γ(d)

m, jm
| λ(d)

m , τ, ζ
(d)

)
∝

(
τζ(d)

)− pm
2

(
λ(d)

m

)aλ+pm−1
exp

−

∑pm

jm=1

∣∣∣∣γ(d)
m, jm

∣∣∣∣√
τζ(d)

+ bλ

 λ(d)
m

 ,
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which is the kernel of the gamma distribution Ga(aλ + pm,
∑pm

jm=1 |γ
(d)
m, jm
|/

√
τζ(d) + bλ). The full conditional of

w(d)
m, jm

is proportional to

p
(
w(d)

m, jm
| γ(d)

m, jm
, λ(d)

m , τ, ζ
(d)

)
∝ π

(
w(d)

m, jm

)
p
(
γ(d)

m, jm
| λ(d)

m , τ, ζ
(d),w(d)

m, jm

)
∝ w(d)

m, jm
− 1

2 exp

−1
2

λ(d)
m

2
w(d)

m, jm
+
γ(d)

m, jm

2

τζ(d)w(d)
m, jm


 ,

which is the kernel of the GIG distribution GiG(1/2, λ(d)
m

2
, γ(d)

m, jm

2
/τζ(d)).

Block 3: Sampling β(d)
m, jm
, γ(d)

m, jm
, µ, σ2, κ2m from p

(
β(d)

m, jm
, γ(d)

m, jm
, κ2m, µ, σ

2 | y,X
)

We derive the full conditional of β(d)
m, jm

in a way such that it only depends on observed data by integrating

out γ(d)
m, jm

. The total number of β(d)
m, jm

we need to sample is D
∑M

m=1 pm and their full conditional distribution

p
(
β(d)

m, jm
| y,X, µ,β− jm , σ

2, τ, ζ(d), κ2m,w
(d)
m, jm

)
is proportional to

p
(
y | X, µ,β, σ2

)∫
R

p
(
β(d)

m, jm
| γ(d)

m, jm
, τ, κ2m, ζ

(d)
)

p
(
γ(d)

m, jm
| τ, ζ(d),w(d)

m, jm

)
dγ(d)

m, jm

∝
∏
t∈T

exp
{
−

1
2

(yt − µ − ⟨B, Xt⟩)2

σ2

}∫
R

p
(
β(d)

m, jm
| γ(d)

m, jm
, τ, ζ(d), κ2m

)
p
(
γ(d)

m, jm
| τ, ζ(d),w(d)

m, jm

)
dγ(d)

m, jm
,

where T ⊂ {1, . . . ,T } contains all the indexes of the observations such that st = k, k ∈ {1, . . . ,K}. Thanks to the
result in Proposition 2, and defining R(d)

t =
∑

d′,d

〈
B(d′)

1 ◦ · · · ◦ B(d′)
M , Xt

〉
, R(d)
ℓ,m, jm,t

=
〈
(B(d)

1 ◦ · · · ◦ B(d)
M )− jm , (Xt)− jm

〉
,

Ψ
(d)
m, jm,t

= vec
(
(B(d)

1 ◦ · · · ◦ B(d)
m−1 ◦ B(d)

m+1 ◦ · · · ◦ B(d)
M ◦ Xt) j̃m

)
and ỹt = yt − µ − R(d)

m, jm,t
− R(d)

t , the terms at the ex-
ponent in the likelihood become:(

yt − µ − β
(d)
m, jm

⊤
Ψ

(d)
m, jm,t

− R(d)
m, jm,t

− R(d)
t

)2
= ỹ2

t + ||Ψ
(d)′

m, jm,t
β(d)

m, jm
||2 − 2β(d)

m, jm

⊤
Ψ

(d)
m, jm,t

ỹt,

and the likelihood can be written as

p
(
y | X, µ,β, σ2

)
∝ exp

− 1
2σ2

∑
t∈T

(
||Ψ

(d)⊤

m, jm,t
β(d)

m, jm
||2 − 2β(d)

m, jm

⊤
Ψ

(d)
m, jm,t

ỹt

) .
For the integration part, given p(β(d)

m, jm
| γ(d)

m, jm
, τ, ζ(d), κ2m) and p

(
γ(d)

m, jm
| τ, ζ(d),w(d)

m, jm

)
are normal then from

Remark A.2 the marginal distribution is normal with mean E
[
β(d)

m, jm

]
= E

{
E

[
β(d)

m, jm
| γ(d)

m, jm

]}
= 0, and variance

V(β(d)
m, jm

) = V
(
E

[
β(d)

m, jm
| γ(d)

m, jm

])
+ E

[
V

(
β(d)

m, jm
| γ(d)

m, jm

)]
= (τζ(d)w(d)

m, jm
+ τζ(d)κ2m)Iqm . Let ξ = τζ(d)

(
w(d)

m, jm
+ κ2m

)
,

then the full conditional of β(d)
m, jm

can be written as follows

p
(
β(d)

m, jm
| y,X, µ, σ2, κ2m, ζ

(d), τ,w(d)
m, jm

)
∝ exp

−1
2

β(d)
m, jm

⊤

∑
t∈T

Υ
(d)
m, jm,t

σ2 +
1
ξ

Iqm

β(d)
m, jm
− 2β(d)

m, jm

⊤
∑
t∈T

Ψ
(d)
m, jm,t

ỹt

σ2




∝ N


∑

t∈T

Υ
(d)
m, jm,t

σ2 +
1
ξ

Iqm


−1 ∑

t∈T

Ψ
(d)
m, jm,t

ỹt

σ2 ,

∑
t∈T

Υ
(d)
m, jm,t

σ2 +
1
ξ

Iqm


−1 ,

where we defined Υ(d)
m, jm,t

= Ψ
(d)
m, jm,t

⊗ Ψ
(d)
m, jm,t

. The full conditional of γ(d)
m, jm

given β(d)
m, jm

can be written as

p
(
γ(d)

m, jm
| β(d)

m, jm
, τ, ζ(d),w(d)

m, jm
, κ2m

)
∝ p

(
β(d)

m, jm
|γ(d)

m, jm
, τ, ζ(d), κ2m

)
p
(
γ(d)

m, jm
| τ, ζ(d),w(d)

m, jm

)
∝ exp

− 1
2τζ(d)

qmw(d)
m, jm
+ κ2m

w(d)
m, jm
κ2m

γ(d)
m, jm
−

w(d)
m, jm

qmw(d)
m, jm
+ κ2m
β(d)

m, jm

⊤
ιqm


2
 ∝ N

 w(d)
m, jm

qmw(d)
m, jm
+ κ2m
β(d)

m, jm

⊤
ιqm ,
τζ(d)w(d)

m, jm
κ2m

qmw(d)
m, jm
+ κ2m

 .
The full conditional of κ2m can be written as

p
(
κ2m | β

(d)
m, jm
,γ(d)

m , τ, ζ
)
∝

D∏
d=1

pm∏
jm=1

p
(
β(d)

m, jm
| γ(d)

m, jm
, τ, ζ(d), κ2m

)
p
(
κ2m

)

=
(
κ2m

)aκ−D pmqm
2 −1

exp

−1
2


∑D

d=1
∑pm

jm=1 ||β
(d)
m, jm
− γ(d)

m, jm
ιqm ||

2

τζ(d)κ2m
+ 2bκκ2m




∝ GiG

aκ − Dpmqm/2, 2bκ,
D∑

d=1

pm∑
jm=1

||β(d)
m, jm
− γ(d)

m, jm
ιqm ||

2/τζ(d)

 .
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The full conditional of σ2 can be written as:

p
(
σ2 | y, X, µ,β

)
∝ p

(
y | X, µ,β, σ2

)
p
(
σ2

)
∝

(
σ2

)−(aσ+ T
2 )−1

exp

− 1
σ2

1
2

T∑
t=1

(yt − ⟨B, Xt⟩ − µ)2 + bσ


 ,

which is the kernel of the IG distribution IG
(
a∗σ, b

∗
σ

)
, where a∗σ = aσ + T

2 and b∗σ =
1
2
∑T

t=1 (yt − ⟨B, Xt⟩ − µ)2 +

bσ. Finally, let µ∗ =
∑T

t=1 (yt − ⟨B, Xt⟩)σ∗µ
2 and σ∗µ

2 =
(
T/σ2 + 1/σ2

µ

)−1
, the full conditional of µ is:

p
(
µ | y, X,β, σ2

)
∝ p

(
y | X, µ,β, σ2

)
π (µ) ∝ exp

− 1
2σ2

Tµ2 − 2µ
T∑

t=1

(yt − ⟨B, Xt⟩)

 − 1
2
µ2

σ2
µ


= exp

−1
2

 T
σ2 +

1
σ2
µ

 µ2 − 2µ
∑T

t=1 (yt − ⟨B, Xt⟩)
σ2

 ∝ N (
µ∗, σ∗µ

2
)
.
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