
1

Choosing the lesser evil: trade-off between false

discovery rate and non-discovery rate

Radu V. Craiu and Lei Sun

University of Toronto

Abstract: The problem of multiple comparisons has become increasingly impor-

tant in light of the significant increase in volume of data available to statisticians.

The seminal work of Benjamini and Hochberg (1995) on the control of the false

discovery rate (FDR) has brought forth an alternative way of measuring type I

error rate that is often more relevant than the one based on the family-wise er-

ror rate. In this paper, we emphasize the importance of considering type II error

rates in the context of multiple hypothesis testing. We propose a suitable quantity,

the expected proportion of false negatives among the true alternative hypotheses,

which we call non-discovery rate (NDR). We argue that NDR is a natural exten-

sion of the type II error rate of single hypothesis to multiple comparisons. The

utility of NDR is emphasized through the trade-off between FDR and NDR, which

is demonstrated using a few real and simulated examples. We also show analyti-

cally the equivalence between the FDR-adjusted p-value approach of Yekutieli and

Benjamini (1999) and the q-value method of Storey (2002). This equivalence dis-

solves the dilemma encountered by many practitioners of choosing the “right” FDR

controlling procedure.
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1. Introduction

The advent of large dimensional data in scientific exploration underscores

the need for more powerful methods to handle the multiplicity problem. In this

context, once a large number m of hypothesis tests are performed, one needs to

determine which, if any, of these tests have produced significant results. Tra-

ditionally, the decision is based on controlling the probability of making even

one type I error, also known as the Family-Wise Error Rate (FWER). However,
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controlling FWER for large values of m typically results in a diminished power

to detect the true signal(s), although it should be noted that a clear definition

of power in this context has yet to be specified.

The breakthrough paper of Benjamini and Hochberg (1995) (henceforth BH)

offers a different approach in which one is interested in controlling the False

Discovery Rate (FDR), i.e. the fraction of erroneous rejections. If we test m

hypotheses, we can summarize the findings as in Table 6.1, where m is assumed

to be fixed and known, m0 and m1 are unknown parameters, R is an observed

random variable, and U, V, T and S are unobserved random variables. Given

the above notation, FWER = Pr(V ≥ 1), and FDR = E[V/R]. To circumvent

the situation in which R = 0, FDR was alternatively defined as E[V/R|R >

0]Pr(R > 0) by BH, and as pFDR = E[V/R|R > 0] by Storey (2002). However,

the distinction is not crucial in many applications because Pr(R > 0) ≈ 1,

as noted by Storey and Tibshirani (2003) among others. Here we work with

the FDR alternatively defined by BH. Improvements and extensions of the BH

method have been proposed by Benjamini and Hochberg (2000), Benjamini and

Yekutieli (2001), Storey (2002, 2003), and Genovese and Wasserman (2001, 2002).

In the context of multiple hypothesis testing, the discussions so far have

focused mostly on type I error rate, α, either in the form of FWER or FDR.

However, in addition to α, of importance is also the type II error rate, β, or

power, 1 − β. Dudoit et al. (2003) briefly discussed three common definitions

of power, namely Pr(S ≥ 1), Pr(S = m1) and E[S]/m1. The measure E[S]/m1

has been used to quantify power by a large number of studies (e.g. Storey et al.,

2004, Li et al., 2005). Unfortunately, few studies offered in-depth investigation

of β and power in the context of multiple hypothesis testing. In this paper, we

intend to fill this gap by formally proposing a new quantity, Non-Discovery Rate

(NDR = E[T]/m1), the expected proportion of non-rejections among false null

hypotheses, as one possible measure of type II error rate for multiple hypothesis

testing, and investigating its properties and utilities. Of particular interest is the

trade-off between NDR and FDR.

The number of false negatives T was also considered by Genovese and Wasser-

man (2002) who defined the False Non-discovery Rate, FNR = T/(m−R). Al-

though mathematically FNR is a suitable measure of β if FDR is used to quantify
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α, we note that FNR may be artificially decreased in the context of hypothesis

generation as in Thomas et al. (1985), and the quantity itself is of little interest

to practitioners (see Appendix for numerical examples). In addition, 1 - FNR is

a function of true negatives but not true positives, an undesirable feature given

the traditional use of 1− β as power. (See Section 2.2 for detailed discussions.)

One of the referees has brought to our attention the Fraction of Non-Selection

(FNS) proposed by Delongchamp et al. (2004). Our NDR measure indeed bears

considerable resemblance to FNS. However, we note that there are significant dif-

ferences between the two quantities and methods. FNS was proposed specifically

for the fixed rejection region approach, in the spirit of Storey (2002). That is,

one rejects all tests with unadjusted p-values less than a pre-determined γ level,

then estimates the corresponding FDR. (We use notation γ to distinguish it from

α.) In that context and assuming that the null p-values are Unif(0,1) distributed,

they defined FNS as FNS(γ) = (m1 − (R−m0γ))/m1, where R = #{pi ≤ γ}.
It should be noted that the threshold γ needed for FNS is not directly available

if the traditional FDR control procedure is used to adjust for the multiplicity

problem (i.e. controlling FDR at a pre-determined α level). In contrast, we de-

fine NDR as a measure of type II error rate in a general setting, independent

of the specific multiple comparison procedure used. The chosen procedure only

affects the estimation of NDR. (See section 6 for more discussions.)

In the next section we formally define NDR and provide justification for con-

sidering this quantity as the type II error rate for multiple hypothesis testing.

We emphasize that much can be gained from a clear understanding and represen-

tation of the dependence between FDR and NDR. The other main contribution

of the paper is in section 3 where we show that the FDR-adjusted p-value ap-

proach of Yekutieli and Benjamini (1999) is equivalent to Storey’s q-value method

(2002). This equivalence dissolves the dilemma encountered by many practition-

ers of choosing the “right” FDR procedure and gives us the freedom to work with

either method in estimating NDR in Section 4. We illustrate our results with a

series of real and simulated data sets in section 5. We present conclusions and

discussion of further work in section 6.

2. Joint analysis of FDR and NDR
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2.1 Definition and motivation

Definition 1. Given m1 > 0, the non-discovery rate (NDR) is defined as

NDR =
E[T]

m1
.

Note that the quantity is defined given m1 > 0. Similarly to FDR for which

R = 0 is a concern, one may define NDR = E[T]/m1 I(m1 > 0). However, this

requires a Bayesian approach rather than treating m1 as an unknown but fixed

parameter. In addition, in situations where none of the null hypotheses are likely

to be false, one would probably not conduct the analysis in the first place. Thus,

we limit our attention to the case where m1 > 0.

The motivation of our work can be well demonstrated by the following toy

example. Consider a situation in which m = 1000 and m1 = 100, and assume the

following two strategies. Under strategy 1, we choose FDR = 0.05. Suppose that

the number of rejections is R = 20, among which 1 is expected to be incorrect, i.e.

V = 1. Thus, the number of false negatives T is likely to be m1− (R−V) = 81

and NDR = 0.81. Under strategy 2, we decide to increase FDR to 0.1. Suppose

that R = 80, then E[V] = 8 and NDR = 0.28. A natural question is whether one

should choose strategy 1 or 2 to perform the analysis. While the answer depends

on the specific objective of each study, we believe that each choice should be made

fully aware of the fact that the proportion of missed signals as measured by NDR

could be unsatisfactorily large for a given FDR level, and a small increase in

FDR may result in a considerable amount of decrease in NDR.

The dependence between α and β for single hypothesis testing is well doc-

umented in literature. For example, assume that
√

n X/σ is used to test the

mean of a normal population (H0 : θ = 0 vs. H1 : θ > 0) with known vari-

ance σ2, based on n iid samples. The probability of a type II error is then

β(θ;α) = 1 − Φ(Φ−1(α) +
√

n θ/σ) where Φ is the cdf of N(0, 1). Figure 6.1

illustrates the trade-off between α and β for θ = 1 and 2 assuming n = 100 andFigure 6.1

here σ = 5. The dashed lines connect α values of 0.01 and 0.05 with their correspond-

ing β values. It can be seen that the gain in power obtained when α is relaxed

from 0.01 to 0.05 is very different in the two situations. Although an increase in
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α comes with an increased power, in the context of simple hypothesis testing, α

is typically pre-specified at a small value (e.g. α = 0.05 for social sciences and

α = 0.01 or 0.001 for natural sciences), and β is mainly discussed when design

and sample size are of concern. However, such standard statistical practice is not

yet available for multiple hypothesis testing utilizing FDR. First, the definition

of type II error rate and power in this context is often unclear. Second, the

trade-off between FDR and type II error rate is not well studied. Finally, the

choice of FDR level seems to be somewhat arbitrary from study to study.

2.2 NDR as type II error rate for multiple comparisons

When a large number of hypotheses are tested simultaneously, the choice of

type II error rate, β, and power, 1 − β, is not unique. For example, Pr(T ≤ k)

and Pr(S ≥ m1 − k), 0 ≤ k ≤ m1 could be defined as type II error rate and

power, respectively, where the choice of k reflects the stringency of the criterion.

However, such definitions are probably more suitable as counterparts for FWER.

To see why NDR is a good candidate as type II error rate for multiple hy-

pothesis testing, consider m independent identical hypotheses H1, ...,Hm with

test statistics t1, ..., tm. Let Hi = 0 denotes a true null hypothesis, and Hi = 1

otherwise, and R be the rejection region. It is not difficult to see that NDR

=
∑

i Pr(ti /∈ R|Hi = 1)/m1 = β. Thus NDR is essentially the average of type II

error rate of single hypothesis testing. If we further assume Pr(Hi = 0) = π0,∀i
from the Bayesian point of view, then FDR = Pr(Hi = 0|ti ∈ R). A direct ex-

tension of this definition of α leads to FNR of Genovese and Wasserman (2002),

and E[FNR] = Pr(Hi = 1|ti /∈ R). However, it is difficult to interpret 1 - FNR

as power, because 1 - E[FNR] = Pr(Hi = 0|ti /∈ R) = E[U/(m −R)], a quantity

that depends on the true negatives but not the true positives. In contrast, NDR

has the traditional frequentist interpretation of β, and 1 - NDR =
∑

i Pr(ti ∈
R|Hi = 1)/m1 = 1− β, the average power. Note that 1 - NDR = E[S]/m1 is

precisely the power defined in Dudoit et al. (2003) and used by many applica-

tions. NDR can be considered a direct extension of the Per-Comparison Error

Rate (PCER), where PCER = E[V]/m ≤ E[V]/m0 =
∑

i Pr(ti ∈ R|Hi = 0)/m0.

Although it is mathematically more straightforward to pair FDR with FNR, and
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PCER with NDR, The values of FNR and PCER are of little interest to practi-

tioners. Therefore, we choose to consider the trade-off between FDR and NDR.

2.3 Trade-off between FDR and NDR

An astute reader will not be surprised that, similar to the trade-off between

α and β in the context of single hypothesis, there is one between FDR and NDR

for multiple comparisons. For illustration, assume that the p-values are from

(Unif [0, 1])θ , where θ = 1 corresponds to the true null hypotheses and θ > 1

corresponds to the false null hypotheses. Figure 6.2 shows three different types

of dependencies between FDR and NDR corresponding to (θ = 2, π0 = 0.9),

(θ = 3, π0 = 0.7) and (θ = 4, π0 = 0.5), where π0 is the proportion of true

null hypotheses. Dashed lines connect FDR values of 0.01 and 0.05 with their

corresponding NDR values. As shown clearly by the graph, a) for some cases,

FDR at 0.01 or 0.05 level may not be suitable if the objective is to screen for as

many true signals as possible for follow up studies, b) a slight increase of FDR

may result in various amounts of decrease in NDR for different alternatives.

Evidently, a better understanding of the relationship between NDR and FDR

can assist with the choice of FDR as well as sample size calculation.

Unlike the α level for a single test, there is no “golden standard” (e.g. 0.05)

for FDR and it could be argued that FDR is chosen based on the specific objective

of each study. For example, in the context of exploratory microarray analyses, a

larger value of FDR might be preferred in order to minimize NDR and identify

as many interesting/promising genes as possible. If the goal is to perform (often

costly) functional studies on significant genes, a more stringent FDR level might

be required to minimize the number of false positives and reduce the unnecessary

spending.

In the context of FNS control, Delongchamp et al. (2004) considered the

trade-off between power (= 1− FNS) and FDR which is also of interest. In

fact, the curve of 1− NDR vs. FDR can be interpreted as a Receiver Operat-

ing Characteristics (ROC) curve, where 1− NDR is the sensitivity and FDR is

1− specificity. The methodology developed for ROC curves could be used to

evaluate different designs and analytic methods in the context of false discovery
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control. However, in order to emphasize the main message of the paper which is

the trade-off between the two types of errors, we continue the discussion around

the dependency between NDR and FDR.

2.4 Cost-effectiveness measure based on FDR and NDR

The decision to use a particular level of FDR depends on the cost of intro-

ducing false positives and the gain of discovering true positives. In this respect,

some measures of cost-effectiveness or efficiency might be proposed. For example,

the following two quantities could be defined,

eratio = wratio
NDR2

NDR1
/
FDR1

FDR2
,

eslope = wslope
NDR2 −NDR1

FDR2 − FDR1
,

where wratio and wslope are weighting factors, and eratio > 1 or eslope > −1

indicates that FDR1 is more cost-effective than FDR2. If eratio is used with

wratio = 1, increasing FDR from 0.01 to 0.1 requires a 10-fold decrease in NDR

to make the two choices of FDR equally efficient, which may not be reasonable.

Alternatively, wratio < 1 could be used to give more weight to the effectiveness

of a decrease in NDR. Compared to eratio, eslope has a natural interpretation

when wslope = 1 and it can be viewed as the slope of the NDR versus FDR

curve. In that case, if the slope of the curve at a chosen FDR value is less than

-1, using a less stringent FDR level could be beneficial. The final choice of eratio
or eslope, or some other measure of efficiency is likely to be study specific and

of interest for future research. In section 5 we demonstrate patterns observed in

three datasets collected for distinctive genetic and genomic studies.

3. Equivalence between FDR-adjusted p-values and q-values

The estimation of NDR depends on the specific procedure for FDR control.

Currently, there are two main approaches. The first, due to Yekutieli and Ben-

jamini (1999), is based on the FDR-adjusted p-value. The second is Storey’s

(2002) q-value method. We show in the following section that the above two
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approaches are in fact equivalent, a result that was also shown numerically by

Black (2004) through simulation studies.

In the original BH procedure, if p(1) ≤, . . . ,≤ p(m) is the ordered sequence of

the m available p-values, we search for the largest k such that p(k) ≤ (k/m)α and

reject all H(j), j ≤ k. Benjamini and Hochberg (2000), Benjamini and Yekutieli

(2001), Genovese and Wasserman (2002) and Finner and Roters (2002) have all

shown that this procedure is conservative in that FDR = απ0, where π0 = m0/m.

(Evidently, FDR ≤ π0 because α ≤ 1.) A natural modification is given by the

adaptive BH procedure (Benjamini and Hochberg, 2000) in which we look for the

largest k such that p(k) ≤ (k/m) (α/π0) and reject all H(j), j ≤ k. This leads to

FDR = (α/π0) π0 = α.

Equivalently, the BH procedure can be performed by means of the FDR

adjusted p-value (Yekutieli and Benjamini, 1999). The FDR adjusted p-value

corresponding to p(i) is defined by

pFDR
(i) = min

{
m p(j)

j
: j ≥ i

}
= min

{
m p(i)

i
, pFDR

(i+1)

}
, (3.1)

with pFDR
(m) = p(m). In order to maintain FDR ≤ α one rejects all hypotheses

with pFDR
(i) ≤ α. Obviously, an adaptive BH method can be implemented by

rejecting all hypotheses with pFDR
(i) ≤ α/π̂0, resulting in R = #{pFDR

(i) ≤ α/π̂0}.
The superiority of the adaptive BH procedure is apparent in that the number

of rejections R is at least as big as in the original BH procedure while still

controlling FDR at level α. However, we emphasize that both the adaptive BH

procedure and Storey’s approach below require a good approximation of π0.

Recently Storey (2002, 2003) has proposed the notion of q-value as the FDR

counterpart of the p-value. Roughly speaking, the q-value of an observed test

statistic associated with hypothesis Hi is the minimum possible FDR for calling

Hi significant. If we declare all hypotheses with q-values less or equal to α

significant, then FDR ≤ α for large m. Using the same notation as in Storey and

Tibshirani (2003), the q-value can be estimated using

q̂(i) = min

{
π̂0 m p(i)

i
, q̂(i+1)

}
,

where q̂(m) = π̂0p(m). It is not hard to see that q̂(i) = π̂0p
FDR
(i) , therefore the num-

ber of rejections based on q-values, Rq = #{q̂(i) ≤ α} = #{pFDR
(i) ≤ α/π̂0} = R.
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4. Estimation of NDR

To estimate NDR, we choose to use the adaptive BH procedure based on

the FDR adjusted p-value. Given the results in Section 3, the estimator works

equally well for the q-value approach.

Storey (2003) has shown that, under certain assumptions including indepen-

dence between tests,

E[V/R|R > 0] = E[V]/E[R]. (4.1)

For general cases, Storey and Tibshirani (2003) argued that (4.1) holds approx-

imately for large m. In the following we assume that (4.1) holds. For a chosen

FDR level α such that 0 ≤ α ≤ π0 and E[(V/R)|R > 0] Pr(R > 0) = α,

NDR =
E[T]

m1
= 1− E[R−V]

m1
= 1− (1− α/Pr(R > 0)) E[R]

(1− π0) m
. (4.2)

A simple estimate of NDR may be obtained by replacing E[R] with its observed

value R, where R = #{pFDR
(i) ≤ α/π̂0}, and π0 with π̂0. We obtain

N̂DR =

{
1− (1− α) R

(1− π̂0) m

}
I(π̂0 < 1). (4.3)

Note that the event {R = 0} is of little concern here because a) Pr(R > 0) ≈ 1 in

practice as argued by Storey and Tibshirani (2003) among others, b) when R = 0,

NDR obviously should be 1 which is the case based on N̂DR above. Because of

the small variance of π̂0 (in the order of o(1/m) using the π̂0(λ) estimator below

and assuming tests are independent), cov(R, π̂0) is negligible. Therefore (for

simplicity we omit the indicator I(π̂0 < 1) in the following expression),

E[N̂DR] ≈ 1− (1− α)E[R]

(1− E[π̂0])m
= 1− (1− α)E[R]

(1− π0 − c)m

= 1− (1− α)E[R]

m

{
1

1− π0 − c
− 1

1− π0
+

1

1− π0

}

= 1− (1− α)E[R]

(1− π0)m
− (1− α)E[R]

(1− π0)m

c

1− π0 − c
, (4.4)

where c is the bias of π̂0. Equation (4.4) suggests that the bias of N̂DR mainly

depends on the bias of π̂0. Consider the following commonly used π0 estimator,

π̂0(λ) = #{pi > λ}/(m (1− λ)), (4.5)
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with λ = 0.5, it is easy to show that the (upward) bias of the estimator is

2 (1− π0) ε, where ε is the probability an alternative p-value is greater than 0.5.

Let F0 and F1 be the cdf of the test statistic under the null and alternative hy-

potheses, ε = F1[F
−1
0 (0.5)], a small value as long as F1 and F0 are not close. For

example, assume F0(t) = Φ0,1(t) and F1(t) = Φµ1,1(t), µ1 > 0, where Φµ,σ2(t) is

the cdf of N(µ, σ2) as in Cox and Wong (2004), then c = 2 (1 − π0) Φ0,1(−µ1),

a value that decreases fast as µ1 increases. However, in situations where π0 is

small and the “distance” between the null and alternative populations is also

small, the bias of π̂0 could be considerable (Black, 2004) which may lead to non-

negligible downward bias of N̂DR, particularly when the chosen FDR level is

high. We thus must acknowledge the central role of accurate estimation of π0 in

the performance of the method proposed here. Specifying good estimators for π0

goes beyond the scope of this paper, and we refer readers to the work of Storey

(2002), Storey and Tibshirani (2003), Storey et al. (2004), Langaas et al. (2005).

5. Examples and simulation study

The following examples demonstrate the various relationships that may exist

between FDR and NDR. For practical reasons, one might be also interested in

knowing, E[R]/m, the proportion of rejections among all the m tests at the given

FDR level. We call this quantity Proportion Of Rejection (POR). A natural

unbiased estimator is P̂OR = R/m. Some simple algebra can also show that

POR ≈ (1− π0) (1−NDR)/(1−FDR). For clarification, we summarize here the

procedure used to produce the plots and tables in this section.

Step 1: Estimate π0, e.g. using equation (4.5) with λ = 0.5.

Step 2: Choose FDR = α, e.g. α ∈ (0, π̂0), on a grid of 0.01.

Step 3: Derive R, e.g. using the above adaptive BH procedure.

Step 4: Estimate NDR using equation (4.3), and POR as above.

5.1 Microarray data

Our first illustration uses the data from example 1 of Storey and Tibshirani

(2003) which contains m = 3, 170 p-values calculated from a study of microarray
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gene expression data (p-values were obtained from Dr. Storey’s website at

http://faculty.washington.edu/~jstorey/). In this case we have also used

Storey and Tibshirani’s estimate of π̂0 = 0.67.

Figure 6.3 presents the relationships between NDR and FDR (left panel),

and between POR and FDR (right panel). The dashed lines connect FDR =

0.01, 0.1 and 0.2 with their corresponding NDR and POR estimates. The results

indicate that increasing FDR from 0.1 to 0.2 can work well for this dataset since

it reduces NDR from 0.73 to 0.45. If one uses wslope = 1, then eslope = −2.8

which favors FDR = 0.2. The slope of the curve at FDR = 0.1 is −2.44, which is

obtained by fitting a linear regression model in a local interval of FDR,(0.1−0.02,

0.1 + 0.02). For extreme situations where the pattern is non-linear, more sophis-

ticated models such as cubic splines may be required to approximate the slope

at a given point. In the right hand panel, it can be seen that roughly 10% and

23% of the 3, 170 tests would be rejected (317 and 729 out of 3170), respectively,

for FDR of 0.1 and 0.2.

5.2 Pedigree error detection using genomewide genetic marker data

The following two examples concern pedigree error detection in the context

of genome-scans to localizing disease susceptibility genes. Both datasets were

distributed as part of the biennial Genetic Analysis Workshops (GAW). The

COGA dataset was collected for the study of genetics of alcoholism (GAW11),

and its potentially misspecified relationships among relative pairs were analyzed

by McPeek and Sun (2000). The CSGA dataset was used for asthma study

(GAW12), and its pedigree errors were analyzed by Sun et al. (2001). Given

a set of collected families, the null hypothesis for a particular relative pair is

the relationship type indicated by the given pedigree, e.g. a sib pair. Genome-

wide genetic marker data are used to perform the corresponding hypothesis test.

Figure 6.4 shows the histogram of the 5381 p-values from the COGA dataset and

the 3276 p-values from the CSGA dataset. The estimates of π0 are 0.68 and 0.81

for the COGA and CSGA datasets respectively.

The top panel of Figure 6.5 (COGA dataset) shows trends similar to those

from the previous microarray example. Increasing FDR from 0.1 to 0.2 seems to
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be beneficial: NDR decreases from 74% to 54% with eslope = −2. The bottom

panel in Figure 6.5 (CSGA dataset) presents a different image. Indeed, even with

FDR = 0.2, NDR remains high (about 0.8) and only 20% of the truly misspec-

ified relative pairs could be detected. Increasing FDR from 0.1 to 0.2 leads to

eslope = −0.9. In this case, π̂0 = 0.81, so one might think that with a smaller

π1 = m1/m it would be easier to identify all the m1 true alternatives. However,

since the noise in the data is bigger, it is in fact more difficult to detect the true

signals. The following simulation study further shows that, given the same level

of FDR, NDR increases as π0 increases.

5.3 A simulation study

We performed a simulation study to investigate the bias and variance of the

NDR and POR estimates. The simulation model considered is similar to that

of Storey (2002) and Black (2004). We generated m = 5000 independent data

points from a normal distribution with mean µ and known variance σ2 = 1. For

each set of data, mπ0 observations were simulated from µ0 = 0 and the remaining

ones from µ1 = 1, 1.5, 2, 2.5 and 3, with π0 ranging from 0.6 to 0.9 on a grid

of 0.1. We considered FDR at level 0.01, 0.05 and from 0.1 to 0.5 on a grid of

0.1. For each replication, to estimate π0, NDR and POR, we used the procedure

described at the beginning of this section. We repeated the above 1000 times.

The true NDR was estimated through another set of 1000 simulations in which

T was tracked.

Figure 6.6 demonstrates the relationships among FDR, NDR and POR for

the models considered above, for a particular simulation realization. The graph

clearly shows that NDR increases as π0 increases. Not surprisingly, for a given π0,

the “distance” between the null and the alternative hypotheses plays a significant

role in determining NDR. For example, when π0 = 0.7 and µ1 = 3, by allowing

FDR to be 0.2 we could identify most of the true signals. In contrast, if µ1 = 1,

NDR does not change almost at all even if one increases FDR from say, 0.01 to

0.2. The above remarks are also clearly reflected by the differences in slopes of

the corresponding NDR versus FDR curves.

Table 6.2 summarizes the results over the 1000 replicates and gives the sam-
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ple average of the NDR estimates and their standard error (SE). (Results for

µ1 = 1.5 and 2.5 are not shown because of their similarities to the others.) The

estimate of NDR tends to be downward biased because of the upward bias of π̂0.

In most cases, the biases are very small. The worse case scenario is the situation

when π0 and µ1 are small and FDR is large (i.e. the largest bias is −0.18 when

π0 = 0.6, µ1 = 1, and FDR = 0.5). When π0 and µ1 are small, the estimate of π0

tends to be less accurate resulting in a larger bias, c. In that case, if the chosen

FDR level is very high, the proportion of rejections increases considerably and

the bias of NDR becomes non-negligible because it is proportional to E[R]/m.

For example, when π0 = 0.6 and µ1 = 1, c ≈ 0.1. If FDR = 0.5, roughly half

of the tests are rejected, and the downward bias of N̂DR is about 0.2 while the

true NDR is about 0.3. This might be an extreme case in practice, since FDR is

unlikely to be chosen at the 0.5 level.

6. Conclusions and future work

In this paper, we proposed the quantity NDR, the expected proportion of

non-rejections among the false null hypotheses, which can be viewed as a natural

extension of the type II error rate for multiple hypothesis testing. (The concept

of NDR certainly relies on the assumption that there are true alternatives, i.e.

m1 > 0.) We also proposed a simple estimator for NDR and investigated its

accuracy through simulation studies. Although the observed bias of our estimator

was small, we note that its performance highly depends on the accuracy of the π0

estimation, particularly when π0 ≈ 1 or when tests are not independent of each

other. Alternatively, the bias of π̂0 could be potentially incorporated directly in

the estimation of NDR. This is of future research interest.

NDR and its trade-off relationship to FDR can be utilized in many ex-

ploratory studies in which the problem of multiple comparisons is of concern,

yet an “optimal” level of FDR to be controlled is unknown. The NDR measure

is also useful at the stage of study design, in particular, for the determination

of adequate sample size for a required level of accuracy. In this context, FDR

is the type I error rate to be controlled, and NDR is the type II error rate to

be minimized, and power is considered to be 1− NDR. For example, in the sim-
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ulation study when µ1 = 1 and π0 = 0.6, there is almost no power (1− NDR

= 1 − 0.96 = 0.04) for FDR at the 0.1 level. However, if a power of 80% is de-

sired while FDR needs to be maintained at the 0.1 level, then a simple simulation

study shows that a sample 4 times that of the original one is required for each

test. Muller et al. (2004), and Tsai et al. (2005) also considered the sample size

calculation for multiple hypothesis testing, but in the context of FNR and/or the

number of false negatives.

It has been shown that the current FDR controlling procedures work well for

independent tests and tests with Positive Regression Dependency (PRD). How-

ever, the effect of general dependence has not been well studied. In their recent

simulation studies of microarray data, Li et al. (2005) has demonstrated that

the actual FDR could be twice the nominal level when the dependent structure

among tests was mimicked under realistic assumptions, and if the proportion of

null genes is greater than 90%. Unfortunately, this is likely to be the case for most

microarray analyses and genome-wide genetic studies. In addition, estimator of

π0 such as the one given in (4.5) is sensitive to the assumption of independence.

Accurate π0 estimation and FDR control under general conditions is still an open

question. The recent work of Efron (2005) suggests that empirical null distribu-

tions (Efron, 2004) could be used as a more robust technique to control FDR in

the presence of correlation. Based on the current estimator of NDR using equa-

tion (4.3), the downward bias of FDR would leads to a downward bias of NDR.

Li et al. (2005) has recommended adjusting the nominal FDR level by half when

π0 > 0.9. In that case, one crude adjustment for NDR estimate is to replace the

nominal FDR level α by 2α in equation (4.3).

In contrast to the FNS of Delongchamp et al. (2004) which was defined

exclusively for the fixed rejection region procedure, our NDR is defined as a

general measure of type II error rate regardless of the specific FDR procedure.

The chosen method however does affect the estimation of NDR. The estimator

considered in (4.3) was developed for the fixed FDR procedure, but can be easily

modified to obtain an NDR estimate under the fixed rejection framework by

replacing the nominal FDR value α with the estimated FDR level. Discussions

on the connection between the fixed rejection and fixed FDR methods can be

found in Storey et al. (2004) and Sun et al. (2006).
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Our study on NDR as well as most work on FDR have focused on the mean

of the estimators. The variance is another quantity of interest, especially in the

context of constructing confidence intervals. The variances of N̂DR and P̂OR

are both proportional to the variance of R, which depends on the structure of

both null and alternative models. The recent paper of Owen (2005) shows pos-

sible pathways of exploring the variance of R and is of particular importance to

further development of the work presented here.

Appendix

In this Appendix, we provide numerical examples that demonstrate the dif-

ferences between NDR and FNR. FNR was proposed to compare the performance

of different FDR controlling procedures (Genovese and Wasserman, 2002), and

has a clear connection with FDR as discussed above. For a given dataset, there

is also a trade-off between FDR and FNR as shown in the following Table A

and Table B. However, because the value of FNR depends on the number of null

hypotheses, the value of FNR could be artificially decreased as demonstrated by

the comparison between Table A and Table B. Therefore, it is difficult to use

FNR as a measure of type II error rate across datasets. In contrast, NDR and

1− NDR are quantities of particular interest to practioners.

For illustration, we assume
√

n X/σ is used to test the mean of a normal

population (H0 : θ = 0 vs. H1 : θ > 0) with known variance σ2 = 52, based on

n = 100 iid samples. The power to detect a single hypothesis at level α is then

Φ(Φ−1(α) +
√

n θ/σ) where Φ is the cdf of N(0, 1). We first assume that there

are 1,000 hypotheses among which 100 are from the alternative population, and

50 have µ1 = 1 and the remaining 50 have µ1 = 1.5. To control FDR at 5%

and 10%, one can reject all hypotheses with (unadjusted) p-values ≤ 0.0022 and

0.0062 respectively (Sun et al. 2006). Table A summarizes the results.

Suppose that an additional set of 1,000 hypotheses would be included. It

is likely that the second set contains fewer true hypotheses. For example, in an

exploratory analysis of gene-expression data a large number of secondary genes

might be added to the set containing high priority genes; in genome-wide link-

age and association studies, a large number of genetic markers are included to
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cover the genome in addition to the ones selected from targeted regions. Assume

that there are in fact only 10 alternatives among which 5 have µ1 = 1 and the

remaining 5 have µ1 = 1.5. Because the proportion of the noise as measured

by π0 is greater, it would be more difficult to identify the alternatives. In other

words, a more stringent criterion is required to control FDR at the same level.

(Controlling FDR at 5% and 10% is equivalent to rejecting all hypotheses with

unadjusted p-values ≤ 0.0009 and 0.0026 respectively.) This is reflected by the

NDR measure which increases from 0.62 to 0.71 for FDR at 5% level, and from

0.5 to 0.6 for FDR at 10%. In contrast, FNR decreases from Table A to Table

B, a result of increased m0 rather than a true reduction of false negatives.
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Table A: NDR and FNR when there are 900 null and 100 alternative

hypotheses.

Control FDR at 5% Control FDR at 10%

Declared Declared Declared Declared Total

non-significant significant non-significant significant

Truth: H0 898 2 894.5 5.5 900

Truth: H1 62 38 50 50 100

Total 960 40 944.5 55.5 1000

NDR = 0.62 NDR = 0.50

FNR = 0.06 FNR = 0.05

Table B: NDR and FNR when there are 1890 null and 110 alternative hypotheses.

Control FDR at 5% Control FDR at 10%

Declared Declared Declared Declared Total

non-significant significant non-significant significant

Truth: H0 1888.3 1.7 1885.2 4.8 1890

Truth: H1 78 32 66.5 43.5 110

Total 1966.3 33.7 1951.7 48.3 2000

NDR = 0.71 NDR = 0.60

FNR = 0.04 FNR = 0.03
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Table 6.1: Summary of findings when testing m hypotheses

Declared Declared Total

non-significant significant

True null hypothesis U V m0

Non-true null hypothesis T S m1 = m−m0

m− R R m
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Table 6.2: Simulation results for the estimate of NDR

Parameters N̂DR (Bias, SE)

µ1, FDR π0 = 0.9 π0 = 0.8 π0 = 0.7 π0 = 0.6

µ1 = 1.0

FDR = 0.01 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001)

FDR = 0.05 1.00 ( 0.00, 0.003) 1.00 ( 0.00, 0.003) 1.00 ( 0.00, 0.004) 0.99 ( 0.00, 0.006)

FDR = 0.10 1.00 ( 0.00, 0.007) 0.99 ( 0.00, 0.008) 0.98 (-0.01, 0.011) 0.96 (-0.01, 0.017)

FDR = 0.20 0.99 (-0.01, 0.014) 0.96 (-0.01, 0.022) 0.90 (-0.03, 0.031) 0.81 (-0.06, 0.034)

FDR = 0.30 0.97 (-0.01, 0.027) 0.89 (-0.03, 0.040) 0.75 (-0.07, 0.045) 0.57 (-0.11, 0.042)

FDR = 0.40 0.93 (-0.03, 0.046) 0.76 (-0.07, 0.059) 0.53 (-0.12, 0.052) 0.32 (-0.16, 0.037)

FDR = 0.50 0.86 (-0.05, 0.074) 0.57 (-0.12, 0.069) 0.30 (-0.16, 0.050) 0.10 (-0.18, 0.031)

µ1 = 2.0

FDR = 0.01 0.98 ( 0.00, 0.014) 0.95 ( 0.00, 0.015) 0.91 ( 0.00, 0.014) 0.87 (-0.01, 0.015)

FDR = 0.05 0.88 (-0.01, 0.036) 0.76 (-0.01, 0.029) 0.65 (-0.02, 0.023) 0.55 (-0.02, 0.019)

FDR = 0.10 0.77 (-0.02, 0.049) 0.60 (-0.02, 0.035) 0.47 (-0.02, 0.027) 0.36 (-0.03, 0.020)

FDR = 0.20 0.59 (-0.03, 0.069) 0.40 (-0.03, 0.042) 0.26 (-0.03, 0.029) 0.16 (-0.03, 0.019)

FDR = 0.30 0.45 (-0.04, 0.083) 0.25 (-0.03, 0.045) 0.13 (-0.03, 0.027) 0.06 (-0.03, 0.015)

FDR = 0.40 0.34 (-0.04, 0.094) 0.15 (-0.04, 0.044) 0.06 (-0.03, 0.022) 0.01 (-0.03, 0.008)

FDR = 0.50 0.23 (-0.05, 0.094) 0.08 (-0.03, 0.037) 0.01 (-0.03, 0.012) 0.00 (-0.01, 0.003)

µ1 = 3.0

FDR = 0.01 0.63 ( 0.00, 0.053) 0.51 ( 0.00, 0.036) 0.42 ( 0.00, 0.027) 0.35 ( 0.00, 0.020)

FDR = 0.05 0.37 (-0.01, 0.084) 0.25 ( 0.00, 0.048) 0.18 ( 0.00, 0.032) 0.13 ( 0.00, 0.022)

FDR = 0.10 0.25 (-0.01, 0.094) 0.15 ( 0.00, 0.051) 0.10 ( 0.00, 0.033) 0.06 ( 0.00, 0.021)

FDR = 0.20 0.15 ( 0.00, 0.093) 0.07 ( 0.00, 0.047) 0.04 ( 0.00, 0.028) 0.02 ( 0.00, 0.016)

FDR = 0.30 0.11 ( 0.00, 0.085) 0.04 ( 0.00, 0.039) 0.02 ( 0.00, 0.020) 0.01 ( 0.00, 0.010)

FDR = 0.40 0.08 ( 0.00, 0.076) 0.03 ( 0.00, 0.030) 0.01 ( 0.00, 0.013) 0.00 ( 0.00, 0.004)

FDR = 0.50 0.06 ( 0.00, 0.066) 0.02 ( 0.00, 0.023) 0.00 ( 0.00, 0.006) 0.00 ( 0.00, 0.005)
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Figure 6.1: Illustration of the trade-off between type I and type II error rates for single

hypothesis testing.
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Figure 6.2: Illustration of dependence between FDR and NDR for multiple hypothesis

testing.
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Figure 6.3: NDR vs. FDR (left panel), and POR vs. FDR (right panel) for the microarray

data example.
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Figure 6.4: Histogram of the p-values for the two pedigree error examples.
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Figure 6.5: NDR vs. FDR (left panel) and POR vs. FDR (right panel) for the two pedigree

error examples.
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Figure 6.6: NDR vs. FDR (left panel) and POR vs. FDR (right panel) for the simulation

model.
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