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Abstract: The problem of multiple comparisons has become increasingly impor-
tant in light of the significant increase in volume of data available to statisticians.
The seminal work of Benjamini and Hochberg (1995) on the control of the false
discovery rate (FDR) has brought forth an alternative way of measuring type I
error rate that is often more relevant than the one based on the family-wise er-
ror rate. In this paper, we emphasize the importance of considering type II error
rates in the context of multiple hypothesis testing. We propose a suitable quantity,
the expected proportion of false negatives among the true alternative hypotheses,
which we call non-discovery rate (NDR). We argue that NDR is a natural exten-
sion of the type II error rate of single hypothesis to multiple comparisons. The
utility of NDR is emphasized through the trade-off between FDR and NDR, which
is demonstrated using a few real and simulated examples. We also show analyti-
cally the equivalence between the FDR-adjusted p-value approach of Yekutieli and
Benjamini (1999) and the g-value method of Storey (2002). This equivalence dis-
solves the dilemma encountered by many practitioners of choosing the “right” FDR

controlling procedure.
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1. Introduction

The advent of large dimensional data in scientific exploration underscores
the need for more powerful methods to handle the multiplicity problem. In this
context, once a large number m of hypothesis tests are performed, one needs to
determine which, if any, of these tests have produced significant results. Tra-
ditionally, the decision is based on controlling the probability of making even

one type I error, also known as the Family- Wise Error Rate (FWER). However,
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controlling FWER for large values of m typically results in a diminished power
to detect the true signal(s), although it should be noted that a clear definition
of power in this context has yet to be specified.

The breakthrough paper of Benjamini and Hochberg (1995) (henceforth BH)
offers a different approach in which one is interested in controlling the False
Discovery Rate (FDR), i.e. the fraction of erroneous rejections. If we test m
hypotheses, we can summarize the findings as in Table 6.1, where m is assumed
to be fixed and known, mo and m; are unknown parameters, R is an observed
random variable, and U, V, T and S are unobserved random variables. Given
the above notation, FWER = Pr(V > 1), and FDR = E[V/R]. To circumvent
the situation in which R = 0, FDR was alternatively defined as E[V/R|R >
0] Pr(R > 0) by BH, and as pFDR = E[V/R|R > 0] by Storey (2002). However,
the distinction is not crucial in many applications because Pr(R > 0) ~ 1,
as noted by Storey and Tibshirani (2003) among others. Here we work with
the FDR alternatively defined by BH. Improvements and extensions of the BH
method have been proposed by Benjamini and Hochberg (2000), Benjamini and
Yekutieli (2001), Storey (2002, 2003), and Genovese and Wasserman (2001, 2002).

In the context of multiple hypothesis testing, the discussions so far have
focused mostly on type I error rate, «, either in the form of FWER or FDR.
However, in addition to «, of importance is also the type II error rate, &, or
power, 1 — 3. Dudoit et al. (2003) briefly discussed three common definitions
of power, namely Pr(S > 1), Pr(S = mq) and E[S]/m;. The measure E[S]|/my
has been used to quantify power by a large number of studies (e.g. Storey et al.,
2004, Li et al., 2005). Unfortunately, few studies offered in-depth investigation
of B and power in the context of multiple hypothesis testing. In this paper, we
intend to fill this gap by formally proposing a new quantity, Non-Discovery Rate
(NDR = E[T]/m1), the expected proportion of non-rejections among false null
hypotheses, as one possible measure of type II error rate for multiple hypothesis
testing, and investigating its properties and utilities. Of particular interest is the
trade-off between NDR, and FDR.

The number of false negatives T was also considered by Genovese and Wasser-
man (2002) who defined the False Non-discovery Rate, FNR = T/(m —R). Al-
though mathematically FNR is a suitable measure of § if FDR is used to quantify
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a, we note that FNR may be artificially decreased in the context of hypothesis
generation as in Thomas et al. (1985), and the quantity itself is of little interest
to practitioners (see Appendix for numerical examples). In addition, 1 - FNR is
a function of true negatives but not true positives, an undesirable feature given
the traditional use of 1 — 3 as power. (See Section 2.2 for detailed discussions.)

One of the referees has brought to our attention the Fraction of Non-Selection
(FNS) proposed by Delongchamp et al. (2004). Our NDR measure indeed bears
considerable resemblance to FNS. However, we note that there are significant dif-
ferences between the two quantities and methods. FNS was proposed specifically
for the fixed rejection region approach, in the spirit of Storey (2002). That is,
one rejects all tests with unadjusted p-values less than a pre-determined  level,
then estimates the corresponding FDR. (We use notation v to distinguish it from
«.) In that context and assuming that the null p-values are Unif(0,1) distributed,
they defined FNS as FNS(vy) = (m1 — (R — mgy))/m1, where R = #{p; < ~}.
It should be noted that the threshold « needed for FNS is not directly available
if the traditional FDR control procedure is used to adjust for the multiplicity
problem (i.e. controlling FDR at a pre-determined « level). In contrast, we de-
fine NDR as a measure of type II error rate in a general setting, independent
of the specific multiple comparison procedure used. The chosen procedure only
affects the estimation of NDR. (See section 6 for more discussions.)

In the next section we formally define NDR and provide justification for con-
sidering this quantity as the type II error rate for multiple hypothesis testing.
We emphasize that much can be gained from a clear understanding and represen-
tation of the dependence between FDR and NDR. The other main contribution
of the paper is in section 3 where we show that the FDR-adjusted p-value ap-
proach of Yekutieli and Benjamini (1999) is equivalent to Storey’s g-value method
(2002). This equivalence dissolves the dilemma encountered by many practition-
ers of choosing the “right” FDR procedure and gives us the freedom to work with
either method in estimating NDR in Section 4. We illustrate our results with a
series of real and simulated data sets in section 5. We present conclusions and

discussion of further work in section 6.

2. Joint analysis of FDR and NDR
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2.1 Definition and motivation

Definition 1. Given m; > 0, the non-discovery rate (NDR) is defined as

E[T)
ml'

NDR =

Note that the quantity is defined given mq > 0. Similarly to FDR for which
R = 0 is a concern, one may define NDR = E[T]/mj I(my > 0). However, this
requires a Bayesian approach rather than treating mi as an unknown but fixed
parameter. In addition, in situations where none of the null hypotheses are likely
to be false, one would probably not conduct the analysis in the first place. Thus,
we limit our attention to the case where my > 0.

The motivation of our work can be well demonstrated by the following toy
example. Consider a situation in which m = 1000 and m; = 100, and assume the
following two strategies. Under strategy 1, we choose FDR = 0.05. Suppose that
the number of rejections is R = 20, among which 1 is expected to be incorrect, i.e.
V = 1. Thus, the number of false negatives T is likely to be m; — (R — V) =81
and NDR = 0.81. Under strategy 2, we decide to increase FDR to 0.1. Suppose
that R = 80, then E[V] = 8 and NDR = 0.28. A natural question is whether one
should choose strategy 1 or 2 to perform the analysis. While the answer depends
on the specific objective of each study, we believe that each choice should be made
fully aware of the fact that the proportion of missed signals as measured by NDR
could be unsatisfactorily large for a given FDR level, and a small increase in
FDR may result in a considerable amount of decrease in NDR.

The dependence between « and [ for single hypothesis testing is well doc-
umented in literature. For example, assume that /n X /o is used to test the
mean of a normal population (Hy : 6 = 0 vs. Hy : § > 0) with known vari-
ance o2, based on n iid samples. The probability of a type II error is then
BO;a) =1 — @@ L(a) + /n 6/o) where ® is the cdf of N(0,1). Figure 6.1
illustrates the trade-off between a and § for # = 1 and 2 assuming n = 100 and
o = 5. The dashed lines connect a values of 0.01 and 0.05 with their correspond-
ing 3 values. It can be seen that the gain in power obtained when « is relaxed

from 0.01 to 0.05 is very different in the two situations. Although an increase in
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« comes with an increased power, in the context of simple hypothesis testing, a
is typically pre-specified at a small value (e.g. « = 0.05 for social sciences and
a = 0.01 or 0.001 for natural sciences), and [ is mainly discussed when design
and sample size are of concern. However, such standard statistical practice is not
yet available for multiple hypothesis testing utilizing FDR. First, the definition
of type II error rate and power in this context is often unclear. Second, the
trade-off between FDR, and type II error rate is not well studied. Finally, the

choice of FDR level seems to be somewhat arbitrary from study to study.
2.2 NDR as type II error rate for multiple comparisons

When a large number of hypotheses are tested simultaneously, the choice of
type II error rate, 3, and power, 1 — 3, is not unique. For example, Pr(T < k)
and Pr(S > m; — k),0 < k < my could be defined as type II error rate and
power, respectively, where the choice of k reflects the stringency of the criterion.
However, such definitions are probably more suitable as counterparts for FWER.

To see why NDR is a good candidate as type II error rate for multiple hy-
pothesis testing, consider m independent identical hypotheses Hq, ..., H,, with
test statistics t1,...,t,,. Let H; = 0 denotes a true null hypothesis, and H; = 1
otherwise, and R be the rejection region. It is not difficult to see that NDR
=, Pr(t; ¢ RIH; = 1)/m; = 3. Thus NDR is essentially the average of type IT
error rate of single hypothesis testing. If we further assume Pr(H; = 0) = 7, Vi
from the Bayesian point of view, then FDR = Pr(H; = O|t; € R). A direct ex-
tension of this definition of « leads to FNR of Genovese and Wasserman (2002),
and E[FNR] = Pr(H; = 1|t; ¢ R). However, it is difficult to interpret 1 - FNR
as power, because 1 - E[FNR] = Pr(H; = 0|t; ¢ R) = E[U/(m — R)], a quantity
that depends on the true negatives but not the true positives. In contrast, NDR
has the traditional frequentist interpretation of 3, and 1 - NDR = Y, Pr(¢; €
R|H; = 1)/m1 = 1 — (3, the average power. Note that 1 - NDR = E[S]/m is
precisely the power defined in Dudoit et al. (2003) and used by many applica-
tions. NDR can be considered a direct extension of the Per-Comparison Error
Rate (PCER), where PCER = E[V]/m < E[V]/mo = Y, Pr(t; € R|H; = 0)/my.
Although it is mathematically more straightforward to pair FDR with FNR, and
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PCER with NDR, The values of FNR and PCER are of little interest to practi-

tioners. Therefore, we choose to consider the trade-off between FDR and NDR.

2.3 Trade-off between FDR and NDR

An astute reader will not be surprised that, similar to the trade-off between
«a and S in the context of single hypothesis, there is one between FDR and NDR
for multiple comparisons. For illustration, assume that the p-values are from
(Unif [0,1]), where § = 1 corresponds to the true null hypotheses and § > 1
corresponds to the false null hypotheses. Figure 6.2 shows three different types
of dependencies between FDR and NDR corresponding to (0 = 2,79 = 0.9),
(0 = 3,m9 = 0.7) and (0 = 4,79 = 0.5), where 7y is the proportion of true
null hypotheses. Dashed lines connect FDR, values of 0.01 and 0.05 with their
corresponding NDR values. As shown clearly by the graph, a) for some cases,
FDR at 0.01 or 0.05 level may not be suitable if the objective is to screen for as
many true signals as possible for follow up studies, b) a slight increase of FDR
may result in various amounts of decrease in NDR for different alternatives.
Evidently, a better understanding of the relationship between NDR, and FDR
can assist with the choice of FDR as well as sample size calculation.

Unlike the « level for a single test, there is no “golden standard” (e.g. 0.05)
for FDR and it could be argued that FDR is chosen based on the specific objective
of each study. For example, in the context of exploratory microarray analyses, a
larger value of FDR might be preferred in order to minimize NDR and identify
as many interesting/promising genes as possible. If the goal is to perform (often
costly) functional studies on significant genes, a more stringent FDR level might
be required to minimize the number of false positives and reduce the unnecessary
spending.

In the context of FNS control, Delongchamp et al. (2004) considered the
trade-off between power (= 1— FNS) and FDR which is also of interest. In
fact, the curve of 1— NDR vs. FDR can be interpreted as a Receiver Operat-
ing Characteristics (ROC) curve, where 1— NDR is the sensitivity and FDR is
1— specificity. The methodology developed for ROC curves could be used to

evaluate different designs and analytic methods in the context of false discovery



FDR and NDR 7

control. However, in order to emphasize the main message of the paper which is
the trade-off between the two types of errors, we continue the discussion around
the dependency between NDR and FDR.

2.4 Cost-effectiveness measure based on FDR and NDR

The decision to use a particular level of FDR depends on the cost of intro-
ducing false positives and the gain of discovering true positives. In this respect,
some measures of cost-effectiveness or efficiency might be proposed. For example,

the following two quantities could be defined,

NDRsy FDR;
Cratio = Wratio WRl/ FDR,’

NDR2 - NDRI
slope = Wslope FDRy — FDRy’

are weighting factors, and e;4jo > 1 or e

where w.,¢i, and w slope > —1

is used with

slope

indicates that FDR; is more cost-effective than FDRoy. If €ratio

Wratio = 1, increasing FDR from 0.01 to 0.1 requires a 10-fold decrease in NDR
to make the two choices of FDR equally efficient, which may not be reasonable.

Alternatively, < 1 could be used to give more weight to the effectiveness

Wratio

of a decrease in NDR. Compared to e has a natural interpretation

ratio’ €slope
slope = 1 and it can be viewed as the slope of the NDR versus FDR

curve. In that case, if the slope of the curve at a chosen FDR value is less than

when w

-1, using a less stringent FDR level could be beneficial. The final choice of e;.,¢i,

or e or some other measure of efficiency is likely to be study specific and

slope>
of interest for future research. In section 5 we demonstrate patterns observed in

three datasets collected for distinctive genetic and genomic studies.
3. Equivalence between FDR-adjusted p-values and g-values

The estimation of NDR depends on the specific procedure for FDR control.
Currently, there are two main approaches. The first, due to Yekutieli and Ben-
jamini (1999), is based on the FDR-adjusted p-value. The second is Storey’s
(2002) g-value method. We show in the following section that the above two
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approaches are in fact equivalent, a result that was also shown numerically by
Black (2004) through simulation studies.

In the original BH procedure, if p(1) <,..., < p(p, is the ordered sequence of
the m available p-values, we search for the largest k such that p(;) < (k/m)a and
reject all H(;), j < k. Benjamini and Hochberg (2000), Benjamini and Yekutieli
(2001), Genovese and Wasserman (2002) and Finner and Roters (2002) have all
shown that this procedure is conservative in that FDR = an, where mg = mg/m.
(Evidently, FDR < 7y because o < 1.) A natural modification is given by the
adaptive BH procedure (Benjamini and Hochberg, 2000) in which we look for the
largest k such that p(,) < (k/m) (a/m) and reject all H;y, j < k. This leads to
FDR = (a/mo) mp = av.

Equivalently, the BH procedure can be performed by means of the FDR
adjusted p-value (Yekutieli and Benjamini, 1999). The FDR adjusted p-value
corresponding to p(;) is defined by

. mpgy .. . mp
PEPR = min {202 i = min {70 pEPRY, (31)
with pgn[))R = P(m)- In order to maintain FDR < « one rejects all hypotheses
with pg)DR < a. Obviously, an adaptive BH method can be implemented by

rejecting all hypotheses with pg)DR < /7y, resulting in R = #{pg)DR < a/fg}.

The superiority of the adaptive BH procedure is apparent in that the number
of rejections R is at least as big as in the original BH procedure while still
controlling FDR at level a. However, we emphasize that both the adaptive BH
procedure and Storey’s approach below require a good approximation of 7.
Recently Storey (2002, 2003) has proposed the notion of g-value as the FDR
counterpart of the p-value. Roughly speaking, the ¢-value of an observed test
statistic associated with hypothesis H; is the minimum possible FDR, for calling
H; significant. If we declare all hypotheses with g-values less or equal to «
significant, then FDR < « for large m. Using the same notation as in Storey and

Tibshirani (2003), the g-value can be estimated using

R . [Tompg) .
q(;) = min fﬂ](i-ﬁ-l) )

where §(,,,) = ToP(m)- It is not hard to see that g(;) = ﬁopg)D R, therefore the num-
ber of rejections based on g-values, Ry = #{; < a} = #{pg)DR <a/wp} =R.
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4. Estimation of NDR

To estimate NDR, we choose to use the adaptive BH procedure based on
the FDR adjusted p-value. Given the results in Section 3, the estimator works
equally well for the g-value approach.

Storey (2003) has shown that, under certain assumptions including indepen-
dence between tests,

E[V/R|R > 0] = E[V]/E[R]. (4.1)
For general cases, Storey and Tibshirani (2003) argued that (4.1) holds approx-
imately for large m. In the following we assume that (4.1) holds. For a chosen
FDR level a such that 0 < a < mp and E[(V/R)|R > 0] Pr(R > 0) = «,
@ _q1_ ER - V] (1 —a/Pr(R > 0)) E[R|]

=1- . (4.2)

NDR =
my my (1 —mp)m

A simple estimate of NDR may be obtained by replacing E[R] with its observed
value R, where R = #{pg)DR < a/fg}, and 7y with 9. We obtain

=n _ [, (d-a)R
NDR —{1 7(1_7%0)7”

} I < 1). (4.3)
Note that the event {R = 0} is of little concern here because a) Pr(R > 0) ~ 1 in
practice as argued by Storey and Tibshirani (2003) among others, b) when R = 0,
NDR obviously should be 1 which is the case based on NDR above. Because of
the small variance of 7y (in the order of o(1/m) using the 7g(\) estimator below
and assuming tests are independent), cov(R, 7o) is negligible. Therefore (for
simplicity we omit the indicator I(7¢p < 1) in the following expression),
(1-oER] _  (1-0ER]

(1 — E[@g])m (1—mp—c)m

1_(1—a)E[R]{ 1 1 1 }

m I—m—c 1-m 1-m
., (1-aER] (1-oER] ¢
=1 (1 . TFO)m (1 _ TF())m 1— o — C’ (4.4)

E[NDR|] ~ 1-

where ¢ is the bias of 7y. Equation (4.4) suggests that the bias of NDR mainly

depends on the bias of y. Consider the following commonly used 7y estimator,

To(A) = #{pi > A}/(m (1 = X)), (4.5)
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with A = 0.5, it is easy to show that the (upward) bias of the estimator is
2 (1 — mp) €, where € is the probability an alternative p-value is greater than 0.5.
Let Fy and Fj be the cdf of the test statistic under the null and alternative hy-
potheses, e = F1[F; '(0.5)], a small value as long as F} and Fy are not close. For
example, assume Fy(t) = ®o1(t) and Fi(t) = @4, ,1(t), p1 > 0, where @, ;»(t) is
the cdf of N(u,0?) as in Cox and Wong (2004), then ¢ = 2 (1 — mg) ®o.1(—p1),
a value that decreases fast as p; increases. However, in situations where mq is
small and the “distance” between the null and alternative populations is also
small, the bias of 7y could be considerable (Black, 2004) which may lead to non-
negligible downward bias of N/D\R, particularly when the chosen FDR level is
high. We thus must acknowledge the central role of accurate estimation of 7 in
the performance of the method proposed here. Specifying good estimators for g
goes beyond the scope of this paper, and we refer readers to the work of Storey
(2002), Storey and Tibshirani (2003), Storey et al. (2004), Langaas et al. (2005).

5. Examples and simulation study

The following examples demonstrate the various relationships that may exist
between FDR, and NDR. For practical reasons, one might be also interested in
knowing, E[R]/m, the proportion of rejections among all the m tests at the given
FDR level. We call this quantity Proportion Of Rejection (POR). A natural
unbiased estimator is POR = R/m. Some simple algebra can also show that
POR =~ (1 —m) (1 = NDR)/(1 — FDR). For clarification, we summarize here the
procedure used to produce the plots and tables in this section.

Step 1: Estimate 7, e.g. using equation (4.5) with A = 0.5.

Step 2: Choose FDR = a, e.g. a € (0,7), on a grid of 0.01.

Step 3: Derive R, e.g. using the above adaptive BH procedure.

Step 4: Estimate NDR using equation (4.3), and POR as above.

5.1 Microarray data

Our first illustration uses the data from example 1 of Storey and Tibshirani

(2003) which contains m = 3,170 p-values calculated from a study of microarray
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gene expression data (p-values were obtained from Dr. Storey’s website at
http://faculty.washington.edu/~ jstorey/). In this case we have also used
Storey and Tibshirani’s estimate of 7o = 0.67.

Figure 6.3 presents the relationships between NDR and FDR (left panel),
and between POR and FDR (right panel). The dashed lines connect FDR =
0.01, 0.1 and 0.2 with their corresponding NDR and POR estimates. The results
indicate that increasing FDR from 0.1 to 0.2 can work well for this dataset since
it reduces NDR from 0.73 to 0.45. If one uses Wlope = 1, then eslope = —2.8
which favors FDR = 0.2. The slope of the curve at FDR = 0.1 is —2.44, which is
obtained by fitting a linear regression model in a local interval of FDR,(0.1—0.02,
0.1+ 0.02). For extreme situations where the pattern is non-linear, more sophis-
ticated models such as cubic splines may be required to approximate the slope
at a given point. In the right hand panel, it can be seen that roughly 10% and
23% of the 3,170 tests would be rejected (317 and 729 out of 3170), respectively,
for FDR of 0.1 and 0.2.

5.2 Pedigree error detection using genomewide genetic marker data

The following two examples concern pedigree error detection in the context
of genome-scans to localizing disease susceptibility genes. Both datasets were
distributed as part of the biennial Genetic Analysis Workshops (GAW). The
COGA dataset was collected for the study of genetics of alcoholism (GAW11),
and its potentially misspecified relationships among relative pairs were analyzed
by McPeek and Sun (2000). The CSGA dataset was used for asthma study
(GAW12), and its pedigree errors were analyzed by Sun et al. (2001). Given
a set of collected families, the null hypothesis for a particular relative pair is
the relationship type indicated by the given pedigree, e.g. a sib pair. Genome-
wide genetic marker data are used to perform the corresponding hypothesis test.
Figure 6.4 shows the histogram of the 5381 p-values from the COGA dataset and
the 3276 p-values from the CSGA dataset. The estimates of 7 are 0.68 and 0.81
for the COGA and CSGA datasets respectively.

The top panel of Figure 6.5 (COGA dataset) shows trends similar to those

from the previous microarray example. Increasing FDR from 0.1 to 0.2 seems to
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be beneficial: NDR decreases from 74% to 54% with eslope = —2- T he bottom
panel in Figure 6.5 (CSGA dataset) presents a different image. Indeed, even with
FDR = 0.2, NDR remains high (about 0.8) and only 20% of the truly misspec-
ified relative pairs could be detected. Increasing FDR from 0.1 to 0.2 leads to
€slope = —0.9. In this case, 79 = 0.81, so one might think that with a smaller
m1 = mq/m it would be easier to identify all the m true alternatives. However,
since the noise in the data is bigger, it is in fact more difficult to detect the true
signals. The following simulation study further shows that, given the same level

of FDR, NDR increases as 7 increases.
5.3 A simulation study

We performed a simulation study to investigate the bias and variance of the
NDR and POR estimates. The simulation model considered is similar to that
of Storey (2002) and Black (2004). We generated m = 5000 independent data
points from a normal distribution with mean ; and known variance o2 = 1. For
each set of data, mmg observations were simulated from pg = 0 and the remaining
ones from p; = 1, 1.5, 2, 2.5 and 3, with 7y ranging from 0.6 to 0.9 on a grid
of 0.1. We considered FDR at level 0.01, 0.05 and from 0.1 to 0.5 on a grid of
0.1. For each replication, to estimate mg, NDR and POR, we used the procedure
described at the beginning of this section. We repeated the above 1000 times.
The true NDR was estimated through another set of 1000 simulations in which
T was tracked.

Figure 6.6 demonstrates the relationships among FDR, NDR and POR for
the models considered above, for a particular simulation realization. The graph
clearly shows that NDR increases as g increases. Not surprisingly, for a given g,
the “distance” between the null and the alternative hypotheses plays a significant
role in determining NDR. For example, when 7y = 0.7 and pu; = 3, by allowing
FDR to be 0.2 we could identify most of the true signals. In contrast, if u; =1,
NDR does not change almost at all even if one increases FDR from say, 0.01 to
0.2. The above remarks are also clearly reflected by the differences in slopes of
the corresponding NDR versus FDR curves.

Table 6.2 summarizes the results over the 1000 replicates and gives the sam-
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ple average of the NDR estimates and their standard error (SE). (Results for
w1 = 1.5 and 2.5 are not shown because of their similarities to the others.) The
estimate of NDR tends to be downward biased because of the upward bias of 7.
In most cases, the biases are very small. The worse case scenario is the situation
when 7y and pp are small and FDR is large (i.e. the largest bias is —0.18 when
m9 = 0.6, uy = 1, and FDR = 0.5). When 7y and p; are small, the estimate of g
tends to be less accurate resulting in a larger bias, c. In that case, if the chosen
FDR level is very high, the proportion of rejections increases considerably and
the bias of NDR becomes non-negligible because it is proportional to E[R]/m.
For example, when 79 = 0.6 and u; = 1, ¢ = 0.1. If FDR = 0.5, roughly half
of the tests are rejected, and the downward bias of NDR is about 0.2 while the
true NDR is about 0.3. This might be an extreme case in practice, since FDR is

unlikely to be chosen at the 0.5 level.
6. Conclusions and future work

In this paper, we proposed the quantity NDR, the expected proportion of
non-rejections among the false null hypotheses, which can be viewed as a natural
extension of the type II error rate for multiple hypothesis testing. (The concept
of NDR certainly relies on the assumption that there are true alternatives, i.e.
mq > 0.) We also proposed a simple estimator for NDR and investigated its
accuracy through simulation studies. Although the observed bias of our estimator
was small, we note that its performance highly depends on the accuracy of the mg
estimation, particularly when mg ~ 1 or when tests are not independent of each
other. Alternatively, the bias of 7y could be potentially incorporated directly in
the estimation of NDR. This is of future research interest.

NDR and its trade-off relationship to FDR can be utilized in many ex-
ploratory studies in which the problem of multiple comparisons is of concern,
yet an “optimal” level of FDR to be controlled is unknown. The NDR measure
is also useful at the stage of study design, in particular, for the determination
of adequate sample size for a required level of accuracy. In this context, FDR
is the type I error rate to be controlled, and NDR is the type II error rate to

be minimized, and power is considered to be 1— NDR. For example, in the sim-
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ulation study when p; = 1 and my = 0.6, there is almost no power (1— NDR
=1-10.96 = 0.04) for FDR at the 0.1 level. However, if a power of 80% is de-
sired while FDR needs to be maintained at the 0.1 level, then a simple simulation
study shows that a sample 4 times that of the original one is required for each
test. Muller et al. (2004), and Tsai et al. (2005) also considered the sample size
calculation for multiple hypothesis testing, but in the context of FNR and/or the
number of false negatives.

It has been shown that the current FDR controlling procedures work well for
independent tests and tests with Positive Regression Dependency (PRD). How-
ever, the effect of general dependence has not been well studied. In their recent
simulation studies of microarray data, Li et al. (2005) has demonstrated that
the actual FDR could be twice the nominal level when the dependent structure
among tests was mimicked under realistic assumptions, and if the proportion of
null genes is greater than 90%. Unfortunately, this is likely to be the case for most
microarray analyses and genome-wide genetic studies. In addition, estimator of
7o such as the one given in (4.5) is sensitive to the assumption of independence.
Accurate g estimation and FDR control under general conditions is still an open
question. The recent work of Efron (2005) suggests that empirical null distribu-
tions (Efron, 2004) could be used as a more robust technique to control FDR in
the presence of correlation. Based on the current estimator of NDR using equa-
tion (4.3), the downward bias of FDR would leads to a downward bias of NDR.
Li et al. (2005) has recommended adjusting the nominal FDR level by half when
mo > 0.9. In that case, one crude adjustment for NDR estimate is to replace the
nominal FDR level a by 2« in equation (4.3).

In contrast to the FNS of Delongchamp et al. (2004) which was defined
exclusively for the fixed rejection region procedure, our NDR is defined as a
general measure of type II error rate regardless of the specific FDR procedure.
The chosen method however does affect the estimation of NDR. The estimator
considered in (4.3) was developed for the fixed FDR procedure, but can be easily
modified to obtain an NDR estimate under the fixed rejection framework by
replacing the nominal FDR value o with the estimated FDR level. Discussions
on the connection between the fixed rejection and fixed FDR methods can be
found in Storey et al. (2004) and Sun et al. (2006).
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Our study on NDR as well as most work on FDR have focused on the mean
of the estimators. The variance is another quantity of interest, especially in the
context of constructing confidence intervals. The variances of NDR and POR
are both proportional to the variance of R, which depends on the structure of
both null and alternative models. The recent paper of Owen (2005) shows pos-
sible pathways of exploring the variance of R and is of particular importance to

further development of the work presented here.
Appendix

In this Appendix, we provide numerical examples that demonstrate the dif-
ferences between NDR and FNR. FNR was proposed to compare the performance
of different FDR controlling procedures (Genovese and Wasserman, 2002), and
has a clear connection with FDR as discussed above. For a given dataset, there
is also a trade-off between FDR and FNR as shown in the following Table A
and Table B. However, because the value of FNR depends on the number of null
hypotheses, the value of FNR could be artificially decreased as demonstrated by
the comparison between Table A and Table B. Therefore, it is difficult to use
FNR as a measure of type II error rate across datasets. In contrast, NDR and
1— NDR are quantities of particular interest to practioners.

For illustration, we assume /n X /o is used to test the mean of a normal
population (Hg : 6 = 0 vs. Hy : @ > 0) with known variance 02 = 52, based on
n = 100 iid samples. The power to detect a single hypothesis at level a is then
®(®1(a) + /n0/c) where ® is the cdf of N(0,1). We first assume that there
are 1,000 hypotheses among which 100 are from the alternative population, and
50 have p; = 1 and the remaining 50 have p; = 1.5. To control FDR at 5%
and 10%, one can reject all hypotheses with (unadjusted) p-values < 0.0022 and
0.0062 respectively (Sun et al. 2006). Table A summarizes the results.

Suppose that an additional set of 1,000 hypotheses would be included. It
is likely that the second set contains fewer true hypotheses. For example, in an
exploratory analysis of gene-expression data a large number of secondary genes
might be added to the set containing high priority genes; in genome-wide link-

age and association studies, a large number of genetic markers are included to
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cover the genome in addition to the ones selected from targeted regions. Assume
that there are in fact only 10 alternatives among which 5 have p; = 1 and the
remaining 5 have p; = 1.5. Because the proportion of the noise as measured
by mg is greater, it would be more difficult to identify the alternatives. In other
words, a more stringent criterion is required to control FDR at the same level.
(Controlling FDR at 5% and 10% is equivalent to rejecting all hypotheses with
unadjusted p-values < 0.0009 and 0.0026 respectively.) This is reflected by the
NDR measure which increases from 0.62 to 0.71 for FDR at 5% level, and from
0.5 to 0.6 for FDR at 10%. In contrast, FNR decreases from Table A to Table

B, a result of increased mg rather than a true reduction of false negatives.
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Table A: NDR and FNR when there are 900 null and 100 alternative

hypotheses.
Control FDR at 5% Control FDR at 10%
Declared Declared Declared Declared  Total
non-significant  significant non-significant significant

Truth: Hy 898 2 894.5 5.5 900
Truth: H, 62 38 50 50 100
Total 960 40 944.5 55.5 1000

NDR = 0.62 NDR = 0.50

FNR = 0.06 FNR = 0.05

Table B: NDR and FNR when there are 1890 null and 110 alternative hypotheses.

Control FDR at 5% Control FDR at 10%
Declared Declared Declared Declared  Total

non-significant  significant non-significant significant

Truth: Hy 1888.3 1.7 1885.2 4.8 1890

Truth: H; 78 32 66.5 43.5 110

Total 1966.3 33.7 1951.7 48.3 2000
NDR = 0.71 NDR = 0.60

FNR = 0.04 FNR = 0.03
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Table 6.1: Summary of findings when testing m hypotheses

Declared Declared Total

non-significant  significant

True null hypothesis U A% mo
Non-true null hypothesis T S mi; =m —mg

m— R R m
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Table 6.2: Simulation results for the estimate of NDR,
Parameters NDR (Bias, SE)
u1, FDR mo = 0.9 mo = 0.8 mo = 0.7 mo = 0.6
p1 =1.0
FDR=0.01 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001) 1.00 ( 0.00, 0.001)
FDR=0.05 1.00 (0.00,0.003) 1.00 ( 0.00,0.003) 1.00 ( 0.00, 0.004) 0.99 ( 0.00, 0.006)
FDR=0.10 1.00 ( 0.00, 0.007) 0.99 ( 0.00, 0.008) 0.98 (-0.01, 0.011)  0.96 (-0.01, 0.017)
FDR =020 0.99 (-0.01, 0.014) 0.96 (-0.01, 0.022) ~ 0.90 (-0.03, 0.031)  0.81 (-0.06, 0.034)
FDR =030 0.97 (-0.01, 0.027)  0.89 (-0.03, 0.040)  0.75 (-0.07, 0.045)  0.57 (-0.11, 0.042)
FDR =040 0.93 (-0.03, 0.046) 0.76 (-0.07, 0.059)  0.53 (-0.12, 0.052)  0.32 (-0.16, 0.037)
FDR=0.50 0.86 (-0.05, 0.074) 0.57 (-0.12, 0.069)  0.30 (-0.16, 0.050)  0.10 (-0.18, 0.031)
1 = 2.0
FDR=0.01 0.98 (0.00,0.014) 0.95 ( 0.00, 0.015) 0.91 ( 0.00, 0.014) 0.87 (-0.01, 0.015)
FDR =0.05 0.88 (-0.01, 0.036) 0.76 (-0.01, 0.029) 0.65 (-0.02, 0.023)  0.55 (-0.02, 0.019)
FDR=0.10 0.77 (-0.02, 0.049)  0.60 (-0.02, 0.035)  0.47 (-0.02, 0.027)  0.36 (-0.03, 0.020)
FDR=0.20 0.59 (-0.03, 0.069) 0.40 (-0.03, 0.042)  0.26 (-0.03, 0.029) 0.16 (-0.03, 0.019)
FDR=0.30 0.45 (-0.04, 0.083) 0.25 (-0.03, 0.045)  0.13 (-0.03, 0.027)  0.06 (-0.03, 0.015)
FDR =040 0.34 (-0.04, 0.094) 0.15 (-0.04, 0.044)  0.06 (-0.03, 0.022)  0.01 (-0.03, 0.008)
FDR=0.50 0.23 (-0.05, 0.094) 0.08 (-0.03, 0.037)  0.01 (-0.03, 0.012)  0.00 (-0.01, 0.003)
p1=3.0
FDR=0.01 0.63 (0.00,0.053) 0.51 ( 0.00, 0.036) 0.42 ( 0.00, 0.027) 0.35 ( 0.00, 0.020)
FDR=0.05 0.37 (-0.01, 0.084) 0.25 ( 0.00, 0.048) 0.18 ( 0.00, 0.032)  0.13 ( 0.00, 0.022)
FDR=0.10 0.25 (-0.01, 0.094) 0.15 ( 0.00, 0.051) 0.10 ( 0.00, 0.033)  0.06 ( 0.00, 0.021)
FDR =020 0.15 (0.00, 0.093) 0.07 ( 0.00, 0.047) 0.04 ( 0.00, 0.028) 0.02 ( 0.00, 0.016)
FDR=0.30 0.11 ( 0.00, 0.085) 0.04 ( 0.00, 0.039) 0.02 ( 0.00, 0.020) 0.01 ( 0.00, 0.010)
FDR=0.40 0.08 (0.00, 0.076) 0.03 ( 0.00, 0.030) 0.01 ( 0.00, 0.013) 0.00 ( 0.00, 0.004)
FDR=0.50 0.06 (0.00, 0.066) 0.02 ( 0.00, 0.023) 0.00 ( 0.00, 0.006) 0.00 ( 0.00, 0.005)
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Figure 6.1: Illustration of the trade-off between type I and type II error rates for single

hypothesis testing.
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Figure 6.2: [llustration of dependence between FDR and NDR for multiple hypothesis

testing.
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Figure 6.3: NDR vs. FDR (left panel), and POR vs. FDR (right panel) for the microarray

data example.
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Figure 6.4: Histogram of the p-values for the two pedigree error examples.
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Figure 6.5: NDR vs. FDR (left panel) and POR vs. FDR (right panel) for the two pedigree

error examples.
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Figure 6.6: NDR vs. FDR (left panel) and POR vs. FDR (right panel) for the simulation

model.
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