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Abstract

Parametric copula families have been known to flexibly capture various dependence
patterns, e.g., either positive or negative dependence in either the lower or upper tails
of bivariate distributions. In this paper, our objective is to construct a model that is
adaptable enough to capture several of these features simultaneously in m dimensions.
We propose a mixture of 2m rotations of a parametric copula that can achieve this goal.
We illustrate the construction using the Clayton family but the concept is general and
can be applied to other families. In order to include dynamic dependence regimes, the
approach is extended to a time-dependent sequence of mixture copulas in which the
mixture probabilities are allowed to evolve in time via a moving average and seasonal
types of relationship. The properties of the proposed model and its performance are
examined using simulated and real data sets.

Keywords: Bayesian inference, dynamic dependence models, moving average process, sea-

sonal model, time varying copulas.

1 Introduction

Copulas have emerged in recent years as viable tools for modelling dependence in non-

standard situations in which the usual “suspects” such as multivariate Gaussian, Student

or Wishart distributions, are not appropriate. Besides being an important tool for method-

ological development and having considerable potential for applications, copulas have gained

popularity due to several features that are desirable to a statistician. Allowing the separation
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of modeling effort for the marginal models and the dependence structure continues to rank

high, but so is the flexibility it exhibits in capturing dependence patterns using paramet-

ric families, especially for bivariate data. In higher dimensions, this flexibility is expressed

through the use of C- or D- vine copulas that make efficient use of bivariate conditional

copulas to flexibly model multivariate ones [5].

In the analysis of extreme value data, it is often desirable to measure the tail depen-

dence in a vector. Some copulas are able to capture tail dependence for instance, the Clay-

ton/Gumbel copula with positive θ parameter exhibits upper/lower tail dependence [22].

However, while one can identify copula families able to capture a bivariate distribution’s

various patterns of lower or upper tail dependence, be they positive or negative, there is in-

terest for developing more flexible parametric families that can capture several such patterns

simultaneously in higher dimensions. Most attempts have been done in two dimensions.

[15] proposed the Joe-Clayton Archimedean copula, which is able to model lower and upper

tail dependence. Later, [14] proposed the use of a three-component mixture of Gaussian,

Gumbel and survival Gumbel copulas that allows for no, lower or upper tail dependence.

Alternatively, the survival Gumbel copula was replaced by the Clayton copula in [20].

A bivariate survival copula is a 180◦ rotation of a bivariate copula. The advantage of

such rotation is that, tail properties are reflected with respect to the v = 1−u line in the unit

square. However, other degrees of rotations, like 90◦ and 270◦, are also possible. For instance,

[16] considered all four rotations of a Clayton copula in two dimensions and developed model

selection criteria for selecting the correct one. On the other hand, [26] proposed a jointly

symmetric copula with an equally weighted mixture of the four way rotations of a copula with

the same parameter. In a similar fashion, [29] proposed two rotation mixtures of 0◦ − 180◦

and 90◦ − 270◦, both with the same dependence parameter, in order to tackle both serial

and cross sectional dependence.

In time series analysis, copulas have been used to capture serial dependence. For example,
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[11] proposed a dynamic copula model in which copula parameters follow an autoregressive

process, and [21] factored the joint density of a unit vector u = (u1, . . . , uT ) as c(u) =∏T
t=1 f(ut | ut−1) assuming Markov conditional distributions. They further used a bivariate

copula to model the transitions, i.e. f(ut | ut−1) = c2(ut−1, ut). Specifically, in the bivariate

copula they use a mixture of rotations of degrees 0◦ − 90◦.

In this paper, we first generalise the concept of bivariate tail dependence to any corner

of the unit m-dimensional hypercube and propose a flexible copula that is able to capture

multiple types of tail dependence. Our goal is achieved by mixing all 2m rotated versions of

the multivariate copula. Furthermore, the 2m-dimensional mixture weights πt are all different

and are allowed to change over time through a moving average type process of order q and a

seasonal component of order p that maintains the marginal distribution invariant over time.

For each of the mixture copula components, dependence parameters are allowed to vary over

time and are, a priori, assumed to be exchangeable. Our context is not a traditional time

series problem in the sense that we do not follow a single individual through time, but rather

we monitor the dependence of several individuals in time.

The rest of the paper is organized as follows. In Section 2, we provide the motivation of

the paper and the required notation. Section 3 contains a discussion about tail dependence.

In Section 5, we define our mixture model for a specific time and define the time dependent

mixture weights and association parameters. Section 6 provides the prior and posterior

distributions that are required to conduct a Bayesian analysis of the model. An illustration

of the model’s performance is reported in Section 7. Section 8 contains conclusions and

directions for future work.

2 Motivation and Notation

The emergence of copulas as important tools for modeling dependence has its origins in

Sklar’s paper [28] which demonstrated that the link between any continuous multivariate
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distribution and its marginals can be achieved via a unique copula C : [0, 1]m → [0, 1]. The

latter is a multivariate distribution with uniform marginals on the interval [0, 1]. Specif-

ically, if F is a multivariate cumulative distribution function (CDF) with marginal CDFs

F1, . . . , Fm, then F (x1, . . . , xm) = C{F1(x1), . . . , Fm(xm)}. Additionally, the copula function

can be obtained as C(u1, . . . , um) = F{F−1
1 (u1), . . . , F

−1
m (um)}, where F−1

j for j = 1, . . . ,m

are the marginal inverse CDFs or quantile functions.

There is a large body of literature devoted to identifying parametric copula families that

are able to capture various dependence patterns in the tails [15]. For instance, in the analysis

of extreme value theory, an important concept is that of dependence in the upper-right or

lower-down quadrants of a joint bivariate distribution. This is quantified by the so-called

upper and lower tail dependence coefficients [7, 15].

Let (X1, X2) be a bivariate vector with marginal CDFs, F1 and, respectively, F2, such

that the joint CDF is given in terms of the copula C as F (x1, x2) = C(F1(x1), F2(x2)).

Tail dependence coefficients are defined as limits of the conditional probabilities that both

variables are above an upper quantile of order 1 − ν, or both variables are below a lower

quantile of order ν, as ν approaches zero. We denote

λ11 = lim
ν→0

P{X1 > F−1
1 (1− ν) | X2 > F−1

2 (1− ν)} = lim
ν→0

P(U1 > 1− ν | U2 > 1− ν)

for the upper-right (upper-upper) corner, and

λ00 = lim
ν→0

P{X1 ≤ F−1
1 (ν) | X2 ≤ F−1

2 (ν)} = lim
ν→0

P(U1 ≤ ν | U2 ≤ ν)

for the lower-down (lower-lower) corner. The binary sub-indexes 0 and 1 stand for lower

and upper, respectively. However, it is possible that both variables have co-movements in

the opposite tails, that is, one variable has values in the upper quantile and the other in the

lower quantile, or conversely. In this case the opposite tail dependencies are defined as

λ10 = lim
ν→0

P{X1 > F−1
1 (1− ν) | X2 ≤ F−1

2 (ν)} = lim
ν→0

P(U1 > 1− ν | U2 ≤ ν)
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for the upper-lower corner, and

λ01 = lim
ν→0

P{X1 ≤ F−1
1 (ν) | X2 > F−1

2 (1− ν)} = lim
ν→0

P(U1 ≤ ν | U2 > 1− ν)

for the lower-upper corner.

These four tail dependence coefficients can be written entirely in terms of the copula. It

is straightforward to show that

λ11 = lim
ν→0

2ν − 1 + C(1− ν, 1− ν)

ν
, λ00 = lim

ν→0

C(ν, ν)

ν
, (1)

λ10 = lim
ν→0

ν − C(1− ν, ν)

ν
, λ01 = lim

ν→0

ν − C(ν, 1− ν)

ν
.

It is also well known [e.g. 33] that the Clayton copula exhibits lower-lower tail dependence,

whereas the Gumbel copula has upper-upper tail dependence. One way of defining copulas

with the four types of tail dependence (1) is by means of rotation as in [16]. It is easy to

see from (1) that for most copulas, the four tail dependence coefficients will be different.

In the next section, we develop a mixture of copulas that allows identical tail dependence

coefficients.

Before we proceed, let us introduce some notation. Let Ga(α, β) denote a gamma density

with mean α/β, Be(α, β) a beta density with mean α/(α+β), N(µ, τ) a normal density with

mean µ and precision τ , Dir(α) a Dirichlet density with parameter vector α, and Mult(c,p)

a multinomial density with total trials c and probability vector p. The density evaluated at

a specific point x, will be denoted using the notation for the density, e.g. Ga(x | α, β), in

the gamma case.

3 Bivariate rotations

Before we introduce the general case, consider for illustration the casem = 2 in which the unit

square [0, 1]2 is divided into four quadrants as in Figure 1. To define the 90-degree rotation,

we consider the probability in quadrant II, P(U1 > u1, U2 ≤ u2) = P(U2 ≤ u2) − P(U1 ≤
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u1, U2 ≤ u2), which in terms of the copula becomes u2 − C(u1, u2). Finally by making the

transformation U ′
1 = 1 − U1, we maintain the marginal uniformity in U ′

1 and can obtain a

new CDF (copula) of the form

C10(u1, u2) = P(U ′
1 ≤ u1, U2 ≤ u2) = u2 − C(1− u1, u2).

To define the 180◦ rotation, we consider the following probability in quadrant III, P(U1 >

u1, U2 > u2) = 1 − P(U1 ≤ u1) − P(U2 ≤ u2) + P(U1 ≤ u1, U2 ≤ u2), which in terms of the

copula becomes 1− u1 − u2 +C(u1, u2). Again, making the transformation U ′
1 = 1−U1 and

U ′
2 = 1− U2 we get a new CDF (copula)

C11(u1, u2) = P(U ′
1 ≤ u1, U

′
2 ≤ u2) = u1 + u2 − 1 + C(1− u1, 1− u2).

Lastly, to define the 270-degree rotation we consider the probability, P(U1 ≤ u1, U2 >

u2) = P(U1 ≤ u1) − P(U1 ≤ u1, U2 ≤ u2), which in terms of the copula can be written as

u1 − C(u1, u2). Making the transformation U ′
2 = 1− U2, we obtain the new CDF (copula)

C01(u1, u2) = P(U1 ≤ u1, U
′
2 ≤ u2) = u1 − C(u1, 1− u2).

For completeness, we denote the original, un-rotated, copula as C00(u1, u2).

If a particular copula has lower-lower or upper-upper tail dependence, each of the four

rotated versions of the copula will have the same tail dependence, but in different corners.

To illustrate, consider the Clayton copula defined as C(u1, u2) =
(
u−θ
1 + u−θ

2 − 1
)−1/θ

for

θ ≥ −1. If θ = 0 Clayton copula reduces to the independence copula, and for θ > 0 the

Kendall’s tau association coefficient is τ = θ/(2+θ) and there is a lower-lower tail dependence

with coefficient λ00 = 2−1/θ.

The four rotations of the Clayton copula are as follows.

(i) 0-degree rotation:

C00(u1, u2) =
(
u−θ
1 + u−θ

2 − 1
)−1/θ

6



(ii) 90- and 270-degrees rotations:

C10(u1, u2) = u2 −
{
(1− u1)

−θ + u−θ
2 − 1

}−1/θ

C01(u1, u2) = u1 −
{
u−θ
1 + (1− u2)

−θ − 1
}−1/θ

(iii) 180-degree rotation:

C11(u1, u2) = u1 + u2 − 1 +
{
(1− u1)

−θ + (1− u2)
−θ − 1

}−1/θ
.

Using (i)–(iii) and (1), it is not difficult to prove that the tail dependence coefficients,

when the tail (corner) corresponds to the rotation, are the same λ00(C00) = λ10(C10) =

λ01(C01) = λ11(C11) and are given by

λjk(Cjk) = lim
ν→0

(
2ν−θ − 1

)−1/θ

ν
= lim

ν→0
(2− νθ)−1/θ = 2−1/θ, (2)

for j, k ∈ {0, 1} and for θ > 0. If the tail coefficient does not correspond to a rotation then

it has the value zero.

4 Multivariate extensions

Let U = (U1, . . . , Um) be an m-multivariate random vector with support on the unit hyper-

cube [0, 1]m, for m ≥ 2. Let C(m) be an m-dimensional symmetric copula. Most dependence

measures involve two random variables, like the Pearson and Spearman correlation coeffi-

cients and Kendall’s tau. Additionally, as far as we are aware, the tail dependence is only

defined for a pair of random variables. Since this last measure is defined in terms of a con-

ditional probability, it can be generalised to more than two random variables in different

ways.

We proposed a generalised tail (corner) dependence multivariate coefficient as follows.

In a m-dimensional copula there are 2m corners that can be identified by a binary sequence

j ∈ J = {0, 1}m such that a value of 0/1 at position l denotes the lower/upper corner of
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variable l for l = 1, . . . ,m. Let us also denote the intervals B0(ν) = [0, ν] and B1(ν) = (ν, 1].

Then the tail dependence coefficient for variable l at corner j = (j1, . . . , jm) is defined as

λl
j = lim

ν→0
P
[
Ul ∈ Bjl(ν) | ∩m

k ̸=l{Uk ∈ Bjk(ν)}
]
, (3)

for l = 1, . . . ,m. There will be a total of #J = 2m tail dependence multivariate coefficients.

It is straightforward to see that each of these coefficients can be expressed in terms of the

copula C(m). Moreover, if the copula is symmetric, then λl
j is the same for any l = 1, . . . ,m.

For example, if m = 3 there are 23 = 8 corners. If j = (0, 0, 1) and l = 2 then λ2
001 =

limν→0 P(U2 ≤ ν | U1 ≤ ν, U3 > 1− ν). By using the definition of conditional probability we

ca re-express this tail dependence coefficient as λ2
001 = limν→0

{
C(2)(ν, ν)− C(3)(ν, ν, ν)

}
/
{
C(1)(ν)− C(2)(ν, ν)

}
,

with C(1)(ν) = ν.

As in the bivariate case, it is possible to rotate an m-variate copula to each of the 2m

corners. Let Jk the subset of J with k 1’s, i.e., if j ∈ Jk then
∑m

l=1 jl = k, for k = 0, . . . ,m.

Moreover, we can partition the set J into disjoint subsets Jk such that, J = ∪m
k=0Jk with

Jk ∩ Jj = ∅ for k ̸= j. The number of elements in each subset is #Jk =
(
m
k

)
, and 2m =∑m

k=0

(
m
k

)
. Let also define uj = (u1−j1

1 (1− u1)
j1 , . . . , u1−jm

m (1− um)
jm).

For k = 0 and j ∈ J0, then

Cj(u) = C(m)(uj),

where C(m) is the original copula without rotation. For k = 1 and j ∈ J1 and if the only

index 1 is situated at the lth position, then

Cj(u) = C(m−1)(uj
(−l))− C(m)(uj).

For k = 2 and j ∈ J2 and if the two indexes 1 are situated at positions (l1, l2), then

Cj(u) = C(m−2)(uj
(−(l1,l2))

)−
2∑

i=1

C(m−1)(uj
(−li)

) + C(m)(uj).

For k = 3 and j ∈ J3 and if the three indexes 1 are situated at positions (l1, l2, l3), then

Cj(u) = C(m−3)(uj
(−(l1,l2,l3))

)−
3∑

i<j

C(m−2)(uj
(−(li,lj))

) +
3∑

i=1

C(m−1)(uj
(−li)

)− Cm(uj).
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We carry on until k = m and j ∈ Jm, so all indexes in j are 1, then

Cj(u) =1−
m∑
i=1

C(1)(1− ui) +
m∑
i<j

C(2)(1− ui, 1− uj)−
m∑

i<j<k

C(3)(1− ui, 1− uj, 1− uk)

+ · · ·+ (−1)mC(m)(1− u1, 1− u2, . . . , 1− um).

If a copula exhibits multivariate tail dependence in a particular corner, each of the rotated

versions of the copula will also have tail dependence in one corner. To illustrate, we also

consider the Clayton family whose multivariate version is defined as

C(m)(u1, . . . , um) =

{
m∑
j=1

(u−θ
i − 1) + 1

}−1/θ

(4)

for θ ≥ 0.

Specifically, we concentrate in the case m = 3. The number of possible rotations is

23 = 8. The four subsets of rotated copulas generated by Jk and k = 0, 1, 2, 3 are:

(iv) For k = 0 we have one element

C000(u) = C(3)(u) =
(
u−θ
1 + u−θ

2 + u−θ
3 − 2

)−1/θ

(v) For k = 1 we have three elements

C100(u) =
(
u−θ
2 + u−θ

3 − 1
)−1/θ −

{
(1− u1)

−θ + u−θ
2 + u−θ

3 − 2
}−1/θ

C010(u) =
(
u−θ
1 + u−θ

3 − 1
)−1/θ −

{
u−θ
1 + (1− u2)

−θ + u−θ
3 − 2

}−1/θ

C001(u) =
(
u−θ
1 + u−θ

2 − 1
)−1/θ −

{
u−θ
1 + u−θ

2 + (1− u3)
−θ − 2

}−1/θ
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(vi) For k = 2 we have three elements

C110(u) =u3 −
{
(1− u2)

−θ + u−θ
3 − 1

}−1/θ −
{
(1− u1)

−θ + u−θ
3 − 1

}−1/θ

+
{
(1− u1)

−θ + (1− u2)
−θ + u−θ

3 − 2
}−1/θ

C101(u) =u2 −
{
(1− u1)

−θ + u−θ
2 − 1

}−1/θ −
{
u−θ
2 + (1− u3)

−θ − 1
}−1/θ

+
{
(1− u1)

−θ + u−θ
2 + (1− u3)

−θ − 2
}−1/θ

C011(u) =u1 −
{
u−θ
1 + (1− u2)

−θ − 1
}−1/θ −

{
u−θ
1 + (1− u3)

−θ − 1
}−1/θ

+
{
u−θ
1 + (1− u2)

−θ + (1− u3)
−θ − 2

}−1/θ

(vii) For k = 3 we have one element

C111(u) = 1− (1− u1)− (1− u2)− (1− u3) +
{
(1− u1)

−θ + (1− u2)
−θ − 1

}−1/θ

+
{
(1− u1)

−θ + (1− u3)
−θ − 1

}−1/θ
+
{
(1− u2)

−θ + (1− u3)
−θ − 1

}−1/θ

−
{
(1− u1)

−θ + (1− u2)
−θ + (1− u3)

−θ − 2
}−1/θ

Similarly to the bivariate case, if the tail coefficient corresponds to a rotation, then we

get a coefficient different from zero. Specifically for the Clayton family with θ > 0, using

(iv)–(vii) and (3), the tail coefficients are given by

λj1,j2,j3(Cj1,j2,j3) = lim
ν→0

(
3ν−θ − 2

)−1/θ

(2ν−θ − 1)−1/θ
= lim

ν→0

(
3− 2νθ

2− νθ

)−1/θ

=

(
3

2

)−1/θ

, (5)

for jl ∈ {0, 1}, l = 1, 2, 3. Note that the superindex in λ has been removed because these

tail coefficients are the same for any l due to the symmetry in the copula. If the tail (corner)

does not correspond to a rotation, the tail coefficient is zero.

5 Dynamic mixtures

Let Ut = (Ut1, Ut2, . . . , Utm) be an m-variate vector with Unif(0, 1) marginal distributions for

each t = 1, 2, . . . , T . The aim in this section is to model the joint distribution of Ut through
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a flexible copula Ct which is able to capture any kind of tail dependence as it evolves in time.

For that, we use all 2m rotations, each one with different parameter θt,j for j ∈ J, and define

the following mixture copula

Ct(ut | πt,θt) =
∑
j∈J

πt,j Cj(ut | θt,j), (6)

with 2m-dimensional parameters πt = (πt,00···0, πt,10···0, . . . , πt,11···1),

θt = (θt,00···0, θt,10···0, . . . , θt,11···1), and Cj is a rotated copula as defined in Section 4. Parame-

ters πt,j > 0 are mixture weights such that
∑

j∈J πt,j = 1, whereas θt,j are copula parameters

whose parameter space depends on the specific copula chosen, for t = 1, . . . , T .

It is not difficult to derive association coefficients, like Kendall’s tau, and tail dependence

coefficients for a mixture copula in terms of the corresponding coefficients for the individual

copulas. In particular, the Kendall’s tau between any par of variables, say (Ut,i, Ut,k), i ̸=

k = 1, . . . ,m, for the mixture copula (6) is

τt = 4E{C(2)
t (Ut,i, Ut,k | πt,θt)} − 1 = 4

∑
j∈J

πt,jE{C(2)
j (Ut,i, Ut,k | θt)} − 1

=
∑
j∈J

πt,j

[
4E{C(2)

j (Ut,i, Ut,k | θt)} − 1
]
=
∑
j∈J

πt,j τt,j,

where τt,j is the individual Kendall’s tau, between (Ut,i, Ut,k), for each of the mixture copula

components Cj. In particular, for the Clayton family (4), all rotated mixture components

Cj, as in (i)–(vii), share the same properties of the Clayton family, therefore their Kendall’s

tau coefficients are τt,j = θt,j/(2+ θt,j) if
∑m

l=1 jl is an even number, and τt,j = −θt,j/(2+ θt,j)

if
∑m

l=1 jl is an odd number. Therefore, the Kendall’s tau coefficient for the mixture copula

(6) of Clayton components becomes

τt =
∑
j∈J

(−1)
∑m

l=1 jl πt,j

(
θt,j

2 + θt,j

)
. (7)

Similarly to Kendall’s tau, it is not difficult to prove that multivariate tail dependence

coefficients (5) for mixture copula (6) at time t, become the mixture of components-wise tail
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dependence coefficients, that is

λt,k(Ct) =
∑
j∈J

πt,jλt,k(Cj), (8)

for any k ∈ J and with λt,k(Cj) the k-tail dependence coefficient for rotated copula Cj. For

the Clayton family case, λt,k(Cj) > 0 only for k = j. Therefore, when m = 2 and using (2),

we obtain that the tail dependence coefficients simplify to λt,j,k(Ct) = πt,j,k(2)
−1/θt,j,k . Now,

for m = 3 we use (5) and obtain that the tail dependence coefficients are λt,j1,j2,j3(Ct) =

πt,j1,j2,j3(3/2)
−1/θt,j1,j2,j3 .

In summary, our mixture copula proposal (6) is flexible enough to capture a larger class

of dependence associations and all 2m tail dependencies, in terms of the copula parameters

πt,j and θt,j for j ∈ J and t = 1, . . . , T .

6 Bayesian analysis

6.1 Prior distributions

To allow for temporal dependence in the parameter estimation, we propose a prior dynamic

process for π = {πt}1≤t≤T , where πt = {πt,j, j ∈ J}. Since
∑

j∈J πt,j = 1 for all t, the

natural marginal prior for πt would be a Dirichlet distribution with parameter a0p, where

p = {pj, j ∈ J} such that a0 > 0, pj > 0 and
∑

j∈J pj = 1. To relate a set of Dirichlet

random variables, we use ideas from [25], who defined dependence in univariate random

variables whose distributions belong to the exponential family, and define a dynamic prior

with temporal dependence as follows.

Let ηt = {ηt,j, j ∈ J} ∈ R2m be a latent vector corresponding to each πt and let ω =

{ωj, j ∈ J} be a unique latent vector such that

ω ∼ Dir(a0p) and ηt | ω
ind∼ Mult(at,ω), (9)

with at ∈ N, ηtk ∈ N and
∑

j∈J ηt,j = at. Then, the prior dependence in πt is modeled
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through a subset ∂t of previous latent variables {η1,η2, . . . ,ηt−1}

πt | η
ind∼ Dir

(
a0p+

∑
k∈∂t

ηk

)
. (10)

We denote this construction as DDir(a0, a,∂) with a0 > 0, a = (a1, . . . , aT ) and subsets

∂ = {∂t} of lags. Different temporal dependencies can be induced by an appropriate selection

of subsets of lags. For instance: moving average type of order q can be induced by defining

∂t = {t, t− 1, . . . , t− q}; (11)

seasonal dependence of order p can be induced by defining, for seasonality s,

∂t = {t, t− s, t− 2s, . . . , t− ps}; (12)

or a combination of moving average of order q and seasonal dependence of order p. In general,

the only requirement is that t ∈ ∂t.

Properties of this prior are given in the following proposition.

Proposition 1 Let π = {πt} ∼ DDir(a0, a,∂) a sequence of vectors whose probability law

is defined by (9) and (10) for a0 > 0, at ∈ N and subsets ∂. Then,

(i) The marginal distribution for each πt is Dir(a0p),

(ii) The correlation between πt,j and πr,j, for t ̸= r and j ∈ J, does not depend on the

specific j and is given by

Corr(πt,j, πr,j) =
a0
(∑

k∈∂t∩∂r ak
)
+
(∑

k∈∂t ak
) (∑

k∈∂r ak
)(

a0 +
∑

k∈∂t ak
) (

a0 +
∑

k∈∂r ak
)

(iii) If at = 0 for all t = 1, 2 . . . then the πt’s become independent.

Proof

For (i) we rely on conjugacy properties of the Dirichlet multinomial Bayesian updating [3].

This states that if ηt, t = 1, 2, . . . are conditionally independent given ω in (9), whose prior

13



is ω ∼ Dir(a0p), then the posterior distribution for ω given the ηt’s is Dir (a0p+
∑

t ηt).

Replacing ω in the posterior by πt we obtain that the marginal distribution for πt is the

same as the prior for ω.

For (ii) we first note that for a specific j, the distributions for ωj, ηt,j and πt,j reduce to beta,

binomial and beta, respectively. To obtain the correlation we rely on iterative formulae. The

covariance is Cov(πt,j, πr,j) = E{Cov(πt,j, πr,j | η)} + Cov{E(πt,j | η),E(πr,j | η)}, where the

first term is zero due to conditional independence. Then

Cov(πt,j, πr,j) = Cov

{
a0pj +

∑
k∈∂t ηk,j

a0 +
∑

k∈∂r ak
,
a0pj +

∑
k∈∂r ηk,j

a0 +
∑

k∈∂r ak

}
,

which, after canceling the additive constants and using the linearity of the covariance, be-

comes

Cov(πt,j, πr,j) =
1(

a0 +
∑

k∈∂t ak
) (

a0 +
∑

k∈∂r ak
)Cov{∑

k∈∂t

ηk,j,
∑
k∈∂r

ηk,j

}
.

After using the iterative formula for a second time, we get

E

[
Cov

{∑
k∈∂t

ηk,j,
∑
k∈∂r

ηk,j

∣∣∣∣∣ω
}]

+ Cov

{
E

(∑
k∈∂t

ηk,j

∣∣∣∣∣ω
)
,E

(
q∑

k∈∂r

ηk,j

∣∣∣∣∣ω
)}

. (13)

Within each sum we can isolate the common part as
∑

k∈∂t ηk,j =
∑

k∈∂t∩∂r ηk,j+
∑

k∈∂t−∂r
ηk,j

and
∑

k∂r
ηk,j =

∑
k∈∂t∩∂r ηk,j+

∑
k∈∂r−∂t

ηk,j, and using covariance properties and conditional

independence, (13) becomes

E

{
Var

( ∑
k∈∂t∩∂r

ηk,j

∣∣∣∣∣ωj

)}
+ Cov

{∑
k∈∂t

akωj,
∑
k∈∂r

akωj

}
.

The first expected value, after obtaining the conditional variance is E{
∑

k∈∂t∩∂r akωj(1 −

ωj)} = (
∑

k∈∂t∩∂r ak)E(ωj − ω2
j ) with E(ωj − ω2

j ) = E(ωj) − E2(ωj) − Var(ωj) = a0Var(ωj).

The second term is (
∑

k∈∂t ak)(
∑

k∈∂r ak)Var(ωj). In conclusion, we obtain

Cov(ωt,j, ωr,j) =
a0
(∑

k∈∂t∩∂r ak
)
+
(∑

k∈∂t ak
) (∑

k∈∂r ak
)(

a0 +
∑

k∈∂t ak
) (

a0 +
∑

k∈∂r ak
) Var(ωj).
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Since ωj, πt,j and πr,j all have the same beta marginal distribution, (ii) is demonstrated.

For (iii) we note that at = 0 for all t implies that ηt = 0 with probability one so the

dependence disappears and πt become independent with marginal distribution Dir(a0p). ⋄

The strength of dependence in the prior for π depends on the model parameters a0, a

and subsets ∂. Larger values of any of the first two induce stronger dependence. More

shared elements in ∂t and ∂r also indicate stronger dependence. However, if the intersection

between sets ∂t and ∂r is empty, the correlation is still positive.

Prior distributions are completed by assigning hierarchical gamma distributions for each

θt,j, so that information is shared across times t for each j. That is,

θt,j | βj
ind∼ Ga(dj, βj), and βj ∼ Ga(ej, gj) (14)

for t ≥ 1 and j ∈ J.

6.2 Posterior distributions

Let Ut,i = (U1,t,i, . . . , Um,t,i) for i = 1, . . . , nt a sample of size nt from model (6) for each

t = 1, . . . , T . Let Zt,i be a latent vector that identifies the mixture component from where

observation i is coming from, that is, Zti = {Zj,t,i, j ∈ J} ∼ Mult(1,πt). Assuming for the

moment that together with Ut,i we observe Zt,i, then the extended likelihood has the form

f(u, z | π,θ) =
T∏
t=1

nt∏
i=1

∏
j∈J

{πt,jfj(u1,t,i, . . . , um,t,i | θt,j)}zj,t,i ,

where fj(ut,i | θt,j) are the density functions associated to each of the copula rotations Cj for

j ∈ J.

In particular, for the Clayton family (4), the corresponding density becomes

fC(u) =

{
m∑
i=1

u−θ
i −m− 1

}−1/θ−m m∏
i=1

{1 + (i− 1)θ}u−θ−1
i .

For any rotated version we just evaluate at ũ = (ũ1, ũ2, . . . , ũm) where ũi can be ui or 1−ui.
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The prior distribution for (π,θ) is defined by equations (9), (10) and (14). Again,

extending the prior to include the latent variables η and ω we get

f(π,η,ω) = Dir(ω | a0p)
T∏
t=1

Dir

(
πt

∣∣∣∣∣a0p+
∑
j∈∂t

ηj

)
Mult(ηt | at,ω)

and

f(θ) =
∏
j∈J

Ga(βj | ej, gj)
T∏
t=1

Ga(θt,j | dj, βj),

independent of each other.

Posterior distributions are characterized through their full conditional distributions. These

include actual parameters as well as latent variables and are given as follows.

(a) The posterior conditional for Zti is

Zti | rest ∼ Mult(1,π∗
t ),

where π∗ = {π∗
t,j} and

π∗
t,j =

πt,jfj(ut,i | θt,j)∑
k∈J πt,kfk(ut,i | θt,k)

.

(b) The posterior conditional for πt is

πt | rest ∼ Dir

(
aop+

∑
k∈∂t

ηk +
nt∑
i=1

zt,i

)
.

(c) The posterior conditional for ηt is

f(ηt | rest) ∝

∏
j∈J

(
ωj

∏
l∈ϱt πl,j

)ηt,j
Γ(ηt,j + 1)

∏
l∈ϱt Γ

(
a0pj +

∑
k∈∂l ηk,j

)
 I

(∑
j∈J

ηt,j = at

)
,

where ϱt = {l : t ∈ ∂l} is the set of inverse subsets.

(d) The posterior conditional for ω is

f(ω | rest) = Dir

(
ω

∣∣∣∣∣c0p+
T∑
t=1

ηt

)
.
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(e) The posterior conditional for θt,j is

f(θt,j | rest) ∝ θ
dj−1

t,j e−βjθt,j

nt∏
i=1

{fj(ut,i | θt,j)}zt,j,i .

(f) The posterior conditional for βj is

βj | rest ∼ Ga

(
ej + Tdj , gj +

T∑
t=1

θt,j

)
.

Posterior inference will rely on the implementation of a Gibbs sampler [30] based on

the previous posterior conditional distributions. Sampling from (a), (b), (d) and (f) is

straightforward since they are of standard form. To sample from (c), since ηt is a vector of

dimension 2m with a sum restriction, it is easier if we sample from each of the components

ηt,j for j ∈ J(−1) = J− 1, with 1 = 11 · · · 1 the vector of all 1’s, using f(ηt,j | rest) ∝{
ωj

∏
l∈ϱt πl,j/

(
ω1

∏
l∈ϱt πl,1

)}ηt,j
I
(
ηt,j ∈ {0, 1, . . . , at −

∑
k∈J(−1)

ηt,k}
)

Γ(ηt,j + 1)
∏

l∈ϱt Γ
(
a0pj +

∑
k∈∂l ηk,j

)
Γ(ηt,1 + 1)

∏
l∈ϱt Γ

(
a0p1 +

∑
k∈∂l ηk,1

) ,
with ηt,1 = at −

∑
j∈J(−1)

ηt,j. Sampling from (e) will require a Metropolis-Hastings step [32].

We suggest to use an adaptive random walk proposal defined as follows. At iteration (r+1)

sample θ∗t,j ∼ Ga(κ, κ/θ
(r)
t,j ) and accept it with probability

α(θ∗t,j, θ
(r)
t,j ) =

f(θ∗t,j | rest)Ga(θ
(r)
tj | κ, κ/θ∗t,j)

f(θ
(r)
t,j | rest)Ga(θ∗t,j | κ, κ/θ

(r)
t,j )

,

where α is truncated to the interval [0, 1] and κ is a tuning parameter that controls the

acceptance rate. We adapt κ following the method of [23]. The adaptation method uses

batches of 50 iterations and for every batch h we compute the acceptance rate AR(h) and

increase κ(h+1) = κ(h)1.01
√
h if AR(h) < 0.3 and decrease κ(h+1) = κ(h)1.01−

√
h if AR(h) > 0.4,

with κ(1) = 1 as starting value. This adaptation scheme satisfies diminishing adaptation as

h → ∞ and in the applications we restrict the parameters to a compact thus ensuring that

the sampler is valid [27].

Implementation code for our dynamic Clayton mixture model, for dimensions m = 2 and

m = 3, can be found at the GitHub repository https://github.com/RuyiPan/TD-MRC.
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7 Numerical analyses

7.1 Simulation study

We conduct a comprehensive simulation study with m = 2 to evaluate the performance of

the proposed model. The true generative model is set using θt = (θt,00, θt,10, θt,01, θt,11) =

(5, 3, 4, 3) for t = 1, . . . , T , with T = 20. The weights of rotated Clayton copulas are chosen

to be linearly dependent in time. More specifically, we first set π1 = (π1,00, π1,10, π1,01, π1,11) =

(0.4, 0.25, 0.25, 0.1) as the initial values at t = 1 and subsequently the weights are constructed

using πt,00 = 0.95πt−1,00, πt,10 = 1.05πt−1,10, πt,11 = 0.1, πt,01 = 1 − πt,00 − πt,10 − πt,11 for

t = 2, . . . , 20. We sampled nt = 300 realizations from this model for each time t = 1, . . . , T

as the simulated data.

For the prior distributions, we set hyper-parameters a0 = 1, and ek = gk = 1. To

evaluate the performance of the model in capturing the temporal dependence, we considered

a moving average type of order q, that is, the subsets of lags are defined by (11). We

considered different hyper-parameters for the dynamic process: at = 0, 1, 10, 20, 30, 40 and

q = 0, 1, . . . , 7. The model with at and q is denoted as Mat,q. We ran the MCMC for

7, 000 iterations. To determine the burn-in, we monitor the adaptive κ parameter and the

acceptance rate for each batch. These are included in Figure 2 where we observe that the

κ becomes stable and the acceptance rate stabilizes between 0.3 and 0.4 after 60 batches.

Therefore we set the burn-in to be equal to 3, 000 = 60 × 50 iterations. This also confirms

that the adaptation method proposed at the end of Section 6 performs well. Computing

time is around 50 minutes for each run on an Intel Core i9 processor at 2.3 GHz with 32 GB

of RAM.

To assess model performance, we computed two goodness of fit (gof) measures, the log-

arithm of the pseudo marginal likelihood (LPML) [8] and Watanabe–Akaike Information

Criterion (WAIC) [34]. Table 1 shows these values. In general, the two gof measures concur
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in determining the best model for each value of q. Briefly put, for smaller values of at, better

fitting is achieved for larger orders of dependence q in the π, whereas for larger values of

at, smaller orders of dependence q produce better fit. Overall, the best model is, M30,7,

obtained with at = 30 and q = 7.

Two more comparisons are also included in Table 1. The case of independence across

times for πt,j is obtained when at = 0, regardless of the value of q. Goodness of fit statistics

show that the independence fitting is not the worst, but is definitely underperforming in

comparison to the other dependence models. Additionally, we also consider the model that

assumes independence in the θt,j. This is achieved by considering a very low variance in βj,

as obtained by setting ej = gj = 1000. This latter model produces inferior gof measures as

compared to the hierarchical priors.

To assess in more detail our model’s performance, we compare posterior estimates of π

and θ with the true values. We use the best fitting model and use posterior means as point

estimates, together with quantiles 2.5% and 97.5% to produce 95% credible intervals. Figure

3 (left panel) shows posterior estimates of πt,j as time series for t = 1, . . . , 20 in four panels

for j ∈ {00, 10, 01, 11}. Posterior estimates follow very closely the path of the true values.

Similarly, Figure 3 (right panel) shows posterior estimates of θt,j as time series in four panels.

All the true values lie within the 95% credible intervals. We note that credible intervals for

θt,00 are narrower at the beginning and become wider toward the end (bottom-left panel)

whereas the credible intervals for θt,10 are wider at the beginning and narrow toward the end

(bottom-right panel). The credible intervals for θt,11 remain wide overall (top-right panel),

while those for θt,01 are narrow (top-left panel) in general. Wider credible intervals are due

to smaller weights (less data points) associated to the corresponding mixture components.

Specifically, the higher variability for θt,11 for larger t is a consequence of the smaller weights

for the third component πt,11.

We compare the best fit produced by Mat,q with the dynamic copula model of Hafner
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& Manner [11]. This latter model assumes a Gaussian copula with time-varying associa-

tion parameter ρt. It relies on a Fisher transformation (inverse hyperbolic tangent) of the

association parameter as λt = (1/2) log ((1 + ρt)/(1− ρt)) and models the dynamics via

an autoregressive process of the form λt = α + βλt−1 + ϵt with ϵt ∼ N(0, τ). We perform a

Bayesian analysis for this model with vague prior distributions α ∼ N(0, 0.01), β ∼ N(0, 0.01)

and τ ∼ Ga(0.01, 0.01). We will refer to this model as dynamic Gaussian.

As a second competitor, we consider a simple Clayton copula, which is the result of

assigning fixed weight one to the mixture model and keeping the exchangeable prior on the

association copula time varying parameters.

To compare, we compute the log predictive scores (LPS) defined in [9]. We fit models

with data up to time t−1 and compute the LPS for time t, that is, LPS(t) =
∑nt

i=1 log f(ut,i |

ut−1), where the predictive distribution is approximated via Monte Carlo as

f(ut,i | ut−1) = (1/R)
R∑

r=1

f(ut,i | π(r)
t ,θ

(r)
t )

and (π
(r)
t ,θ

(r)
t ) are obtained from the posterior distribution f(πt,θt | u1, . . . ,ut−1) for a total

of R iterations.

The LPS measures at t = 20 as well as the LPML and WAIC for the different models are

reported in Table 2. The performance of the simple Clayton copula is the worst, as expected.

The dynamic Gaussian improves a little the goodness of fit measures, but is far behind the

dynamic Clayton mixtures. When removing the n20 data points from the fitting, the best

performance is achieved when taking at = 20 and q = 7.

7.2 Bivariate real data analysis

We also assess how well our model can capture the relationship between variables in a real life

application where data is generated from some unknown distribution, rather than directly

from a mixture copula.
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We used the Environment and Climate Change Canada (ECCC) data catalogue from

the government of Canada. The ECCC managed the National Air Pollution Surveillance

Program (NAPS), which began in 1969 and is now comprised of nearly 260 stations in 150

rural and urban communities reporting to the Canada-wide air quality database (for more

details about the dataset, please visit https://data-donnees.az.ec.gc.ca/data/air/monitor).

Specifically, we selected ozone (O3) and particulate matter with diameters 2.5 and smaller

(PM2.5) as the bivariate data. We used the hourly data from the years 2017 to 2019. Due to

a large number of missing values, we took averages across hours and across days to produce

monthly data for each station, t = 1, . . . , T with T = 36 for a total time span of three years.

The number of stations varies across months, specifically we have nt = 177 for the months

in 2017, nt = 187 for 2018 and nt = 189 for 2019.

Since our focus is not on the marginal distributions, but on the association between

these two variables, we applied the modified rank transformation [6] to produce data in

the interval [0, 1]. Specifically, if observed data is denoted by (X1ti, X2ti), we compute the

empirical cdf’s, independently for each variable, say F̂X1 and F̂X2 and apply the inverse

transformation U1ti = F̂−1
X1

(X1ti) and U2ti = F̂−1
X2

(X2ti).

To explore the data, we computed empirical Kendall’s tau and Spearman’s rho association

coefficients per month. These are shown in Figure 2. In both cases the dependence is cyclical

around zero, reaching its maximum in June/July and its minimum in October/November.

This suggests that a seasonal specification of our model seems to be a good candidate to

capture these cycles. For completeness we considered three types of models: moving average

type of order q as in (11); seasonal model of order p with annual seasonality s = 12 as in

(12); and a combination of moving average and seasonal. We denote the model Mat,q,p where

the indexes describe chosen values for at, q and p.

Similar to the simulation study, we set the parameters a0 = 1 and ek = gk = 1 to define

the prior distributions. In this real data analysis, we also varied the dependence parameters
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at = 0, 1, . . . , 5, q = 0, 1, . . . , 4 and p = 0, 1, 2 to assess the performance of the model under

different strengths of temporal dependence. We ran the MCMC for 10, 000 iterations and

set the burn-in equal to 5, 000. Computing time is around 60 minutes for each run in an

Intel Core i9 processor at 2.3 GHz with 32 GB of RAM.

Table 3 shows the LPML and WAIC values for the different prior specifications. The two

gof measures agree that the preferred model is M1,1,2, i.e. when at = 1, q = 1 and p = 2.

In summary, a combination of moving average and seasonality are required to model this

particular dataset.

In Figure 5 we show posterior estimates of the weights π (left panel) and copula coef-

ficients θ (right panel), respectively. The cyclical monthly dependence is captured by the

weights. Since the first and third components of the mixture induce positive dependence,

and second and fourth induce negative dependence, there is an opposite behaviour between

the pairs (πt,00, πt,11) and (πt,10, πt,01). The former reaches its peak in the summer and the

latter in the autumn-winter, however the peaks within the second pairs do not occur exactly

at the same months, πt,10 has its peak around September-October (autumn), whereas πt,01

has its peak around December-January (winter). Among the four components, component 3

is the one with slightly smaller weights, apart from the summer of the year 2019 where πt,11

has two peaks in May and September of around 0.75 and 0.5, respectively. Therefore, our

mixture model is able to capture the seasonal dynamics in the data.

The strength of the association between the pair (O3, PM2.5) is determined by parameters

θt,j. Their posterior estimates are all around slightly below the value of one, with θt,10 and

θt,01 showing more variability along time. Uncertainty in the estimation of θt,11 is somehow

higher, due to the slightly smaller weights πt,11 and thus smaller sample size for estimating

θt,11. According to θt,00, positive dependence is particularly higher in the summer of the

years 2017 and 2019 with a lower-lower tail dependence. On the other hand, looking at θt,10

and θt,01, negative dependence is high in the winter of the three years.

22



We can further assess the tail dependence in the four corners of the unit square by

computing the tail dependence coefficients λt, given in (8). These are reported in Figure 6.

We first note that none of them is larger than 1/2, the only exception being the upper-lower

λt,10 in October of 2018, where perhaps O3 was extremely high and PM2.5 was extremely low

in that month. The lower-lower and upper-upper tail parameters λt,00 and λt,11 show very

similar behaviour, they are most of the time close to zero, both with moderate peaks in July

of the three years. On the other hand, the upper-lower and lower-upper tail parameters λt,10

and λt,01 do not behave exactly in the same way. These have wider peaks than the previous

tail coefficients with moderate tail dependencies in the autumn for λt,10 and in the winter

for λt,01.

Finally, we show joint density estimates in Figure 7 as heat plots, together with scat-

ter plots of the data for each month t. We particularly concentrate on the months where

the dependence changes from negative to positive. This transition is consistent along the

three years of study for the months of June and July. It is interesting to see that Au-

gust is a transition month, where in 2017 and 2019 the dependence is 4-way, i.e., the four

mixture components of our model are present, in fact the estimated weights and coeffi-

cients are: π2017−8 = (0.41, 0.52, 0.02, 0.05), θ2017−8 = (0.69, 0.69, 0.81, 0.59); π2018−8 =

(0.07, 0.86, 0.04, 0.03), θ2018−8 = (0.48, 0.31, 0.84, 0.50); π2019−8 = (0.11, 0.59, 0.09, 0.21),

θ2019−8 = (0.57, 0.31, 0.59, 0.58). What makes the heat plots to show the 4-way dependence

is a combination of the weight πt,j and the intensity θt,j.

We compare the fit of M1,1,2 with the dynamic Gaussian and simple Clayton copula

and carry out two validation studies. In the first validation study we partition the dataset

into two sets, fitting and testing. For each month t = 1, . . . , T we took n1t = 140 obser-

vations for fitting and n2t = nt − 140 for testing. We estimate the model parameters with

the fitting set and use the testing set to predict O3 conditional on the observed value of

PM2.5. For this we use the conditional copula Ct(u1,t | u2,t,πt,θt) =
∑

j πt,jCk(u2,t | u1,t, θt,j)
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with Cj(u2,t | u1,t, θt,j) = (∂/∂u1,t)Cj(u1,t, u2,t | θt,j) for j ∈ {00, 10, 01, 11}, and obtain the

posterior predictive mean û2,t = E(U2,t | u1,t,πt,θt) as point prediction.

We assess model performance by computing the mean square error between the observed

u2,t and predicted û2,t for O3 in the test set, i.e. MSE =
(∑T

t=1 n2tMSEt

)
/
(∑T

t=1 n2t

)
,

where MSEt = (1/n2t)
∑n2t

i=1(u2,t − û2,t)
2, as well as the LPML and WAIC goodness of fit

measures for the fitting sets. Results from the first validation study are included in Table 4.

All four gof statistics for the dynamic Clayton mixture model are better than those obtained

with the dynamic Gaussian and simple Clayton copula models, confirming that our model

is preferred for the analysis.

The second validation study consists in comparing the log predictive scores (LPS) defined

in [9]. We fit models with data up to time t− 1 and compute the LPS for time t. We repeat

this for times t = s+ 1, . . . , T and aggregate the scores as

LPS =
T∑

t=s+1

nt∑
i=1

log f(ut,i | ut−1).

In particular we took s = 30. The values of LPS are reported in Table 5. Here we observe that

the simple Clayton has the worst predictive scores. For times t = 31, 32, 33, 35 the dynamic

Gaussian copula obtains a better predictive score, and for times t = 34, 36 the dynamic

Clayton mixtures has better performance. However, when aggregating the predictive scores

for the six predicted times, our proposed model achieves the best performance.

7.3 Multivariate real data analysis

Using the same Canadian pollution repository ECCC, we selected PM2.5, nitrogen dioxide

(NO2) and sulfur dioxide (SO2) to perform a multivariate analysis with m = 3 variables.

Again, hourly data were averaged to produce monthly data for years 2017 to 2019. In total

we have T = 36 months and nt = 91 stations for each month in 2017, nt = 104 for 2018,

and nt = 100 for 2019. We applied the modified rank transformation to produce data in the

interval [0, 1].

24



We first performed an exploratory analysis and computed pairwise empirical Kendall’s

tau coefficients for the three variables. These are reported in Figure 8. Dependencies are not

seasonal as in the bivariate case and the three coefficients fluctuate between negative and

positive values. Largest positive dependence occurs between PM2.5 and NO2, and lowest

negative dependence between NO2 and CO2.

Prior specifications, dependence search and MCMC settings were the same as in the

bivariate real data analysis. Table 6 reports the LPML and WAIC gof statistics. Both

measures agree on the best model which is M4,4,2, that is, a dynamic total mass at = 4, a

moving average order of q = 4 and a seasonal order of p = 2. Although the seasonality was

not clear in the exploratory analysis, the best model is using information from previous two

years.

Posterior inference for parameters π and θ are shown in Figure 9 obtained with the

preferred model. We observe that component 000 (no rotation) dominates the mixture with

the highest weight π000 of around 75%, followed by component 001 with the remaining 25%.

The rest of the components have estimated weights close to zero, with component 111 having

sometimes a small positive weight in the winter 2017-2018 and in spring of 2019. Copula

coefficients were also estimated. Point estimates are all different than zero for all mixture

components, however credible intervals are a lot narrower for those components with high

weight. Largest θ values correspond to mixture 110, but the uncertainty is too high (wide

credible intervals) to be trusted.

Joint density estimates are presented as pairwise heat maps in Figure 10. We only

show the last trimester of 2017 and each row corresponds to a different pair, as follows:

(PM2.5, NO2) in the top row, (PM2.5, SO2) in the middle row, and (NO2, SO2) in the bottom.

In all bivariate density estimates we see the presence of tail dependence in the 00 (lower-

lower) corner, whereas in the second and third row we see a 01 (lower-upper) tail dependence.

This corresponds to SO2 which is plotted in the y-axis and has a negative dependence with
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the other two variables PM2.5 and CO2. This combination of tail dependencies makes the

heatmaps show a spider effect towards the bottom-left and upper-left corners in September

and November of 2017. Moreover, in October of 2017, for the pairs (PM2.5, SO2) and

(NO2, SO2), a combination of three trends can be identified with three tail dependencies in

the 00, 01 and 11 corners.

Certainly, this non standard dependence among these three pollution variables could not

be captured by a single copula model.

8 Concluding remarks and future work

We extend a copula’s versatility in capturing dependence patterns using mixtures of copulas

with a dynamic component in the weights. The idea is illustrated using Clayton copulas,

but it can be applied to any other families. The motivation is given by problems where

different extreme regions of the paiwise bivariate distributions exhibit patterns that cannot

be captured by a single copula.

In situations in which the dependence varies in time, we propose a dynamic mixture

of copulas model in which the mixture weights and the parameters of the copulas involved

in the mixture are modelled either through a moving average or a seasonal dynamic. The

resulting increase in modelling flexibility is illustrated by all our numerical experiments, be

they synthetic or real.

Dependence in our dynamic Dirichlet prior on the weights is controlled by the triplet

(at, q, p). For the analyses considered here we have kept at to be constant across time, to

make our prior easy to define. However, this parameter can certainly be chosen to be different

across time, providing additional flexibility in the model. We have left this substantial

generalization for future work.

Additionally, special care has to be put for the analysis of multivariate data for large

dimension m, since the number of components in the mixture increases exponentially at a
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rate 2m. In practice, not all extremes are likely to be significant. In order to impose sparsity,

we plan to exploit a sparse prior designed to reduce the number of components needed to

model the data and still maintain the added flexibility demonstrated in this work. An added

question of interest is the identification of lower dimensional manifolds where a mixture of

lower-dimensional copulas can be used to capture the dependence in the data.
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[24] Nieto-Barajas, L.E. and Hoyos-Argëlles, R. (2023). Generalised Bayesian sample copula

of order m. Computational Statistics. To appear.

29



[25] Nieto-Barajas, L.E. and Gutiérrez-Peña, E. (2022). General dependence structures for

some models based on exponential families with quadratic variance functions. TEST

31, 699–716.

[26] Oh, D.H. and Patton, A.J. (2016). High-dimensional copula-based distributions with

mixed frequency data. Journal of Econometrics 193, 349–366.

[27] Roberts, G.O. and Rosenthal, J.S. (2007). Coupling and ergodicity of adaptive Markov

chain Monte Carlo algorithms. Journal of Applied Probability, 44, 458–475.
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ek, gk at q = 0 q = 1 q = 2 q = 3 q = 4 q = 5 q = 6 q = 7
LPML

1 0 1685
1 1 1686 1683 1684 1688 1687 1692 1691 1696
1 10 1693 1698 1702 1702 1706 1705 1707 1706
1 20 1696 1702 1705 1705 1707 1706 1707 1706
1 30 1699 1704 1706 1708 1705 1708 1706 1708
1 40 1702 1705 1704 1708 1706 1705 1705 1705

1000 30 1682 1688 1691 1693 1693 1691 1693 1692
WAIC

1 0 -3372
1 1 -3374 -3368 -3370 -3378 -3375 -3384 -3384 -3393
1 10 -3388 -3397 -3403 -3405 -3413 -3410 -3413 -3411
1 20 -3393 -3405 -3409 -3411 -3415 -3413 -3414 -3412
1 30 -3398 -3409 -3411 -3416 -3410 -3415 -3413 -3416
1 40 -3403 -3410 -3409 -3416 -3412 -3410 -3409 -3411

1000 30 -3364 -3376 -3382 -3386 -3386 -3382 -3385 -3385

Table 1: Simulated data. LPML and WAIC gof values of different Mat,q models. Best values
are bolded.

Model / Measure LPS LPML WAIC
M2,2 73.2 1603 -3209
M20,7 74.9 1625 -3250
M30,7 73.1 1624 -3247
D.Gaussian 25.4 146 -292
S.Clayton -12.3 9 -18

Table 2: Simulated data. LPS statistic using times 1, . . . , 19 for fitting and t = 20 for
prediction. The other gof measures, LPML and WAIC, were calculated with the fitting
data.
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LPML WAIC
at MA(0) MA(1) MA(2) MA(3) MA(4) MA(0) MA(1) MA(2) MA(3) MA(4)

S(0)
0 435 -871
1 433 438 436 434 434 -867 -875 -873 -868 -867
2 433 433 433 426 422 -866 -867 -866 -852 -843
3 432 432 428 421 416 -864 -863 -857 -843 -832
4 432 427 421 417 410 -863 -855 -841 -834 -820
5 429 424 417 409 403 -858 -849 -834 -817 -805

S(1)
0 435 -871
1 440 441 439 435 433 -880 -881 -878 -869 -866
2 439 435 433 427 422 -877 -871 -865 -854 -843
3 434 432 427 420 414 -868 -865 -854 -839 -829
4 432 428 422 414 408 -863 -857 -844 -829 -815
5 427 424 416 408 401 -854 -848 -832 -815 -802

S(2)
0 435 -871
1 440 442 438 433 430 -879 -883 -876 -867 -859
2 437 433 433 427 420 -874 -865 -865 -854 -840
3 434 432 427 419 413 -867 -864 -853 -838 -826
4 430 425 424 412 407 -861 -850 -847 -824 -813
5 426 422 418 408 397 -852 -844 -836 -817 -794

Table 3: Bivariate real data. LPML and WAIC statistics for different prior choices for
Mat,q,p.

Model / Measure MSE LPML WAIC
M1,1,2 0.0751 397 -794
D.Gaussian 0.0763 383 -767
S.Clayton 0.0826 39 -78

Table 4: Bivariate real data. Goodness of fit measures in first validation study.
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Model t = 31 t = 32 t = 33 t = 34 t = 35 t = 36 Total

M1,1,0 -10.5 -3.1 -9.1 17.8 21.6 11.4 28.2
M1,2,0 -3.2 -4.7 -12.1 21.8 25.3 12.2 39.3
M1,1,1 -12.4 -3.8 -10.9 16.1 24.0 11.9 24.9
M1,2,1 -5.9 -2.7 -11.6 18.5 26.8 11.6 36.7
M1,2,2 -8.2 -3.1 -10.0 15.4 26.8 12.3 33.2
D.Gaussian 5.2 -1.8 -1.3 -7.1 37.5 6.1 38.8
S.Clayton -79.5 -170.5 -153.6 -258.2 -246.1 -199.8 -1107.6

Table 5: Bivariate real data. LPS statistic computed by fitting models from time 1 to t− 1
and predicting time t.

LPML WAIC
at MA(0) MA(1) MA(2) MA(3) MA(4) MA(0) MA(1) MA(2) MA(3) MA(4)

S(0)
0 271 -542
1 286 289 293 294 294 -573 -579 -589 -588 -589
2 281 278 278 278 276 -562 -557 -557 -556 -553
3 287 291 289 292 291 -574 -582 -579 -586 -583
4 290 299 293 297 297 -581 -601 -587 -594 -595
5 282 282 281 282 282 -565 -565 -563 -565 -565

S(1)
0 271 -542
1 288 288 291 295 287 -576 -577 -583 -590 -575
2 279 279 278 278 276 -559 -558 -557 -557 -553
3 289 289 292 292 294 -579 -579 -584 -586 -589
4 292 294 298 297 293 -586 -591 -597 -594 -587
5 283 282 283 283 283 -568 -565 -567 -566 -567

S(2)
0 271 -542
1 287 286 289 295 279 -575 -572 -578 -590 -562
2 280 279 281 277 277 -561 -558 -562 -555 -556
3 290 291 291 292 292 -579 -582 -582 -586 -585
4 296 296 295 295 301 -594 -593 -591 -590 -603
5 285 285 286 282 283 -571 -571 -572 -565 -566

Table 6: Multivariate real data. LPML and WAIC statistics for different prior choices for
Mat,q,p.
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Figure 3: Simulated data. Posterior estimates of π (left) and θ (right): posterior mean (solid
line) with 95% credible intervals (shadows), together with the true value (dotted black line).
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Figure 4: Bivariate real dataset. Empirical Kendall’s tau (left) and Spearman’s rho (right).
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Figure 5: Bivariate real dataset. Posterior estimates of π (left) and θ (right): posterior
mean (solid line) with 95% credible intervals (shadows).
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Figure 7: Observed real data and estimated joint density from April to September 2017 (top),
2018 (middle), and 2019 (bottom). Dependence patterns tend to vary between seasons with
some months exhibiting transitional regimes.
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Figure 8: Multivariate real dataset. Pairwise empirical Kendall’s tau.
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Figure 9: Multivariate real dataset. Posterior estimates of π (top) and θ (down): posterior
mean (solid line) with 95% credible intervals (shadows).
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Figure 10: Multivariate real data. Estimated joint density for months September to Decem-
ber of 2017. (PM2.5, NO2) (top row), (PM2.5, SO2) (middle row) and (NO2, SO2) (bottom
row).
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