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Abstract

Parametric copula families have been known to flexibly capture various dependence
patterns, e.g., either positive or negative dependence in either the lower or upper tails
of bivariate distributions. In this paper, our objective is to construct a model that is
adaptable enough to capture several of these features simultaneously in m dimensions.
We propose a mixture of 2™ rotations of a parametric copula that can achieve this goal.
We illustrate the construction using the Clayton family but the concept is general and
can be applied to other families. In order to include dynamic dependence regimes, the
approach is extended to a time-dependent sequence of mixture copulas in which the
mixture probabilities are allowed to evolve in time via a moving average and seasonal
types of relationship. The properties of the proposed model and its performance are
examined using simulated and real data sets.

Keywords: Bayesian inference, dynamic dependence models, moving average process, sea-

sonal model, time varying copulas.

1 Introduction

Copulas have emerged in recent years as viable tools for modelling dependence in non-
standard situations in which the usual “suspects” such as multivariate Gaussian, Student
or Wishart distributions, are not appropriate. Besides being an important tool for method-
ological development and having considerable potential for applications, copulas have gained

popularity due to several features that are desirable to a statistician. Allowing the separation



of modeling effort for the marginal models and the dependence structure continues to rank
high, but so is the flexibility it exhibits in capturing dependence patterns using paramet-
ric families, especially for bivariate data. In higher dimensions, this flexibility is expressed
through the use of C- or D- vine copulas that make efficient use of bivariate conditional
copulas to flexibly model multivariate ones [5].

In the analysis of extreme value data, it is often desirable to measure the tail depen-
dence in a vector. Some copulas are able to capture tail dependence for instance, the Clay-
ton/Gumbel copula with positive § parameter exhibits upper/lower tail dependence [22].
However, while one can identify copula families able to capture a bivariate distribution’s
various patterns of lower or upper tail dependence, be they positive or negative, there is in-
terest for developing more flexible parametric families that can capture several such patterns
simultaneously in higher dimensions. Most attempts have been done in two dimensions.
[15] proposed the Joe-Clayton Archimedean copula, which is able to model lower and upper
tail dependence. Later, [14] proposed the use of a three-component mixture of Gaussian,
Gumbel and survival Gumbel copulas that allows for no, lower or upper tail dependence.
Alternatively, the survival Gumbel copula was replaced by the Clayton copula in [20].

A bivariate survival copula is a 180° rotation of a bivariate copula. The advantage of
such rotation is that, tail properties are reflected with respect to the v = 1 —w line in the unit
square. However, other degrees of rotations, like 90° and 270°, are also possible. For instance,
[16] considered all four rotations of a Clayton copula in two dimensions and developed model
selection criteria for selecting the correct one. On the other hand, [26] proposed a jointly
symmetric copula with an equally weighted mixture of the four way rotations of a copula with
the same parameter. In a similar fashion, [29] proposed two rotation mixtures of 0° — 180°
and 90° — 270°, both with the same dependence parameter, in order to tackle both serial
and cross sectional dependence.

In time series analysis, copulas have been used to capture serial dependence. For example,



[T1] proposed a dynamic copula model in which copula parameters follow an autoregressive
process, and [2I] factored the joint density of a unit vector u = (uq,...,ur) as c¢(u) =
Hthl f(ug | ug—1) assuming Markov conditional distributions. They further used a bivariate
copula to model the transitions, i.e. f(u; | ui—1) = ca2(us—1,us). Specifically, in the bivariate
copula they use a mixture of rotations of degrees 0° — 90°.

In this paper, we first generalise the concept of bivariate tail dependence to any corner
of the unit m-dimensional hypercube and propose a flexible copula that is able to capture
multiple types of tail dependence. Our goal is achieved by mixing all 2™ rotated versions of
the multivariate copula. Furthermore, the 2"-dimensional mixture weights 7r; are all different
and are allowed to change over time through a moving average type process of order ¢ and a
seasonal component of order p that maintains the marginal distribution invariant over time.
For each of the mixture copula components, dependence parameters are allowed to vary over
time and are, a priori, assumed to be exchangeable. Our context is not a traditional time
series problem in the sense that we do not follow a single individual through time, but rather
we monitor the dependence of several individuals in time.

The rest of the paper is organized as follows. In Section [2| we provide the motivation of
the paper and the required notation. Section |3| contains a discussion about tail dependence.
In Section [3], we define our mixture model for a specific time and define the time dependent
mixture weights and association parameters. Section [6] provides the prior and posterior
distributions that are required to conduct a Bayesian analysis of the model. An illustration
of the model’s performance is reported in Section [/} Section [§ contains conclusions and

directions for future work.

2 Motivation and Notation

The emergence of copulas as important tools for modeling dependence has its origins in

Sklar’s paper [28] which demonstrated that the link between any continuous multivariate



distribution and its marginals can be achieved via a unique copula C' : [0, 1] — [0,1]. The
latter is a multivariate distribution with uniform marginals on the interval [0, 1]. Specif-
ically, if F' is a multivariate cumulative distribution function (CDF) with marginal CDFs
Fi,...,F,, then F(xy,...,z,) = C{Fi(z1),..., Fu(x,)}. Additionally, the copula function
can be obtained as C(uy, ..., up) = F{F ' (u1),..., Fy'(um)}, where F; ! for j =1,...,m
are the marginal inverse CDF's or quantile functions.

There is a large body of literature devoted to identifying parametric copula families that
are able to capture various dependence patterns in the tails [15]. For instance, in the analysis
of extreme value theory, an important concept is that of dependence in the upper-right or
lower-down quadrants of a joint bivariate distribution. This is quantified by the so-called
upper and lower tail dependence coefficients [7, [15].

Let (X1, X5) be a bivariate vector with marginal CDFs, F} and, respectively, F», such
that the joint CDF is given in terms of the copula C as F(xy,x2) = C(Fi(x1), Fa(z2)).
Tail dependence coefficients are defined as limits of the conditional probabilities that both
variables are above an upper quantile of order 1 — v, or both variables are below a lower

quantile of order v, as v approaches zero. We denote
Ay = lim P{X; > F'l-v) | Xo> Fy'(1—v)} = m P(Uy > 1—v|Up>1-v)
for the upper-right (upper-upper) corner, and
Ao = lim P{X, < F'(v) | Xo < FHv)} = lim P(U, <v|Uy <v)

for the lower-down (lower-lower) corner. The binary sub-indexes 0 and 1 stand for lower
and upper, respectively. However, it is possible that both variables have co-movements in
the opposite tails, that is, one variable has values in the upper quantile and the other in the

lower quantile, or conversely. In this case the opposite tail dependencies are defined as
)\10 = 1111(1)P{X1 > Ffl(l — V) ’ Xy < F{l(l/)} = 111%P<U1 >1—v | U; < V)
v—r v—
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for the upper-lower corner, and
)\01 = hH(l]P{Xl § Ffl<V) ‘ X2 > F271<1 - V)} = hH(l]P(Ul S v ‘ U2 >1-— V)
v— v—

for the lower-upper corner.
These four tail dependence coefficients can be written entirely in terms of the copula. It

is straightforward to show that

2v—1 1—v,1-—
)\11 = lim v + C( v V), )\00 = lim —C<V7 V>, (1)
v—0 v v—0 v
- C(1 - - C(v,1—
)\10 = 111’11 Y ( Y V), )\01 = hm Y <U7 V) .
v—0 1% v—0 v

It is also well known [e.g.[33] that the Clayton copula exhibits lower-lower tail dependence,
whereas the Gumbel copula has upper-upper tail dependence. One way of defining copulas
with the four types of tail dependence is by means of rotation as in [I6]. It is easy to
see from that for most copulas, the four tail dependence coefficients will be different.
In the next section, we develop a mixture of copulas that allows identical tail dependence
coefficients.

Before we proceed, let us introduce some notation. Let Ga(a, ) denote a gamma density
with mean o/, Be(a, 8) a beta density with mean o/(a+ ), N(u, 7) a normal density with
mean 4 and precision 7, Dir(a) a Dirichlet density with parameter vector a, and Mult(c, p)
a multinomial density with total trials ¢ and probability vector p. The density evaluated at
a specific point x, will be denoted using the notation for the density, e.g. Ga(z | a, ), in

the gamma case.

3 Bivariate rotations

Before we introduce the general case, consider for illustration the case m = 2 in which the unit
square [0, 1]? is divided into four quadrants as in Figure . To define the 90-degree rotation,

we consider the probability in quadrant II, P(U; > u,Us < ug) = P(Uy < ug) — P(U; <
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uy, Us < ug), which in terms of the copula becomes us — C(uy,uz). Finally by making the
transformation U] = 1 — U;, we maintain the marginal uniformity in U] and can obtain a

new CDF (copula) of the form
Cho(ur, uz) = P(U] < uy, Uy < ug) = ug — C(1 — ug, uz).

To define the 180° rotation, we consider the following probability in quadrant 111, P(U; >
Uy, U2 > UQ) =1- P(Ul S Ul) - P(Ug S UQ> + P(Ul S Uy, U2 S UQ), which in terms of the
copula becomes 1 — u; — ug + C(uy, uz). Again, making the transformation U] = 1 — U; and

U)y=1— U, we get a new CDF (copula)
C’H(ul,u2) = P(U{ S Uy, Ué S UQ) = U] + Uy — 1+ C(l — Uy, 1-— 'LLQ).

Lastly, to define the 270-degree rotation we consider the probability, P(U; < uy,Us >
ug) = P(U; < uy) — P(Uy < uy, Uy < ugy), which in terms of the copula can be written as

uy — C(uq, uy). Making the transformation U) = 1 — Uy, we obtain the new CDF (copula)
Cor(ur,up) = P(Uy < uy, Uy < ug) = ug — Clug, 1 — uy).

For completeness, we denote the original, un-rotated, copula as Cyg(uy, us).

If a particular copula has lower-lower or upper-upper tail dependence, each of the four
rotated versions of the copula will have the same tail dependence, but in different corners.
To illustrate, consider the Clayton copula defined as C'(uy,uy) = (ul_‘9 +uy? — 1)_1/ ” for
0 > —1. If 6 = 0 Clayton copula reduces to the independence copula, and for § > 0 the
Kendall’s tau association coefficient is 7 = 6/(24-60) and there is a lower-lower tail dependence
with coefficient \gg = 27/°.

The four rotations of the Clayton copula are as follows.

(i) O-degree rotation:

_ _ —1/6

6



(ii) 90- and 270-degrees rotations:
—9 —0 -1/6
Cl(](ul,UQ)ZUQ—{(l—Ul) +U2 —1}
1/6
COl(Ul,UQ = Uy — {ul ]. — UQ — 1} /
(iii) 180-degree rotation:

1/6
011<u1,U2):U1+UQ—1+{(1—U1> +(1—U2 —]_} /

Using (i)-(iii) and (T]), it is not difficult to prove that the tail dependence coefficients,
when the tail (corner) corresponds to the rotation, are the same Agy(Cop) = A1o(Co) =

Ao1(Co1) = M1(Ch1) and are given by

o0 — 1)
Ajr(Cj) = lim v ) = lim(2 — %)Y = 271/0 (2)

v—0 1 v—0

for j,k € {0,1} and for § > 0. If the tail coefficient does not correspond to a rotation then

it has the value zero.

4 Multivariate extensions

Let U = (Uy,...,U,) be an m-multivariate random vector with support on the unit hyper-
cube [0,1]™, for m > 2. Let C™ be an m-dimensional symmetric copula. Most dependence
measures involve two random variables, like the Pearson and Spearman correlation coeffi-
cients and Kendall’s tau. Additionally, as far as we are aware, the tail dependence is only
defined for a pair of random variables. Since this last measure is defined in terms of a con-
ditional probability, it can be generalised to more than two random variables in different
ways.

We proposed a generalised tail (corner) dependence multivariate coefficient as follows.
In a m-dimensional copula there are 2™ corners that can be identified by a binary sequence

j € J ={0,1}" such that a value of 0/1 at position [ denotes the lower/upper corner of

7



variable [ for [ = 1,...,m. Let us also denote the intervals By(v) = [0,v] and By(v) = (v, 1].

Then the tail dependence coefficient for variable [ at corner j = (ji, ..., jm) is defined as
)‘j = lli%P [Ul S BJL( ) | mk;ﬁl{Uk € B]k(y)}} ) (3)
for [ =1,...,m. There will be a total of #J = 2™ tail dependence multivariate coefficients.

It is straightforward to see that each of these coefficients can be expressed in terms of the
copula C™ . Moreover, if the copula is symmetric, then )‘.li is the same for any [ =1,...,m.
For example, if m = 3 there are 2° = 8 corners. If j = (0,0,1) and [ = 2 then A3, =

lim, o P(Us <v | U; <v,U;s >1—v). By using the definition of conditional probability we

ca re-express this tail dependence coefficient as A3y, = lim, o {C® (v,v) — CO)(v,v,v)} / {CH(v) —

with CV(v) = v.

As in the bivariate case, it is possible to rotate an m-variate copula to each of the 2™
corners. Let Ji the subset of J with k 1’s, i.e., if j € Jj, then > ", jy =k, for k =0,...,m
Moreover, we can partition the set J into disjoint subsets Ji such that, J = U] J, with
JeNJ; = 0 for k # j. The number of elements in each subset is #J, = (), and 2™ =
>oio (7). Let also define w! = (uy M (1 — g ), kI (1 = g, )im).

For k =0 and j € Jy, then

where C(™ is the original copula without rotation. For k = 1 and j € J; and if the only

index 1 is situated at the [** position, then

Cj(u) = C’(m_l)(uj

(71)) - C(m)(uj)-

For k = 2 and j € J, and if the two indexes 1 are situated at positions (I1,[3), then

Ci(u) = C" A (ad_, ) Zcml )+ ().

For k = 3 and j € J3 and if the three indexes 1 are situated at positions (ly,ls,l3), then

C;(u) = ¢ 3>< taday) Zcm 2( +Zcm 1) — C™(ud).

1<J

CP (1



We carry on until £ =m and j € J,,, so all indexes in j are 1, then

Ci(u) =1 =) COM —u) + Y COM =1 —uy) = > COM—wy, 1=y, 1 — uy)

i=1 i<j i<j<k
o ()OO (1 —ug, 1 =g,y 1 — ).

If a copula exhibits multivariate tail dependence in a particular corner, each of the rotated
versions of the copula will also have tail dependence in one corner. To illustrate, we also
consider the Clayton family whose multivariate version is defined as

m ~1/6
C™ (uy, ... ) = {Z(u;"—mﬂ} (4)
j=1
for 0 > 0.
Specifically, we concentrate in the case m = 3. The number of possible rotations is

23 = 8. The four subsets of rotated copulas generated by J; and k = 0, 1,2, 3 are:

(iv) For k = 0 we have one element

Cooo(u) = OO (u) = (ur? + 1z +uz? —2)

(v) For k =1 we have three elements

—-1/6 _ _ _ —1/6
1/ —{(l—ul) 9+u26+u39_2} 1/

Cloo(u) = (UQ_H + U3_9 — 1)
_ _ —1/6 _ _ _ —1/60
0010(U):(u19+u39—1) / — u19+(1—u2) 9+U30—2} /

_ _ —1/ _ _ _ ~1/
0001(u):(u19+u20—1) /o _ u10+u29+(1—u3) 9—2} /



(vi) For k = 2 we have three elements

C'Ho(u) =Uus — {(1 — Ug)ie + U;H — 1}71/0 — {(1 — ’LL1>79 + 'U/ge — 1}71/0

+{(1- w) 04 (1 —up) 4 uz? — 2}—1/9
Chor(w) =up — {(1 - uy) "+ uy? — 1}_1/9 —duy? 4+ (1 —uz)™? — 1} 1/0
{0 =)y (1 —ug) ™ 2}—1/0
Cori(u) =uy — {U1 (1-— uQ)—f? _ 1}—1/9 _ ul—e 41— ) — 1} 1/6

F{u? + (1 —w) P+ (1 —uz)? — 2} 1o
(vii) For k = 3 we have one element

Cm(U):1—(1—u1)—(1—u2)—(1—u3)+{(1_ul) (1 — )™ _1} 1/6
+{(1—u1) + (1 —u3)” _1} 1/9+{1_u) (1= ug) _1} 1/6

{0 =) (=) (1 — ) =2}

Similarly to the bivariate case, if the tail coefficient corresponds to a rotation, then we
get a coefficient different from zero. Specifically for the Clayton family with 6 > 0, using
(iv)—(vii) and (@), the tail coefficients are given by

. (3l — 2)_1/0 , 320\ * 3\ /?
)‘j17j2,j3 (Ojl,jz,]é) = lim 1)—1/9 - }/ILI(I) (m) - (5) ) (5)

v—0 <2V—9 _

for j, € {0,1}, I = 1,2,3. Note that the superindex in A has been removed because these
tail coefficients are the same for any [ due to the symmetry in the copula. If the tail (corner)

does not correspond to a rotation, the tail coefficient is zero.

5 Dynamic mixtures

Let U; = (Up, Uz, . . ., Uyn) be an m-variate vector with Unif(0, 1) marginal distributions for

eacht =1,2,...,T. The aim in this section is to model the joint distribution of U, through
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a flexible copula C; which is able to capture any kind of tail dependence as it evolves in time.
For that, we use all 2 rotations, each one with different parameter 6, ; for j € I, and define

the following mixture copula

Ct(“t | 7Tt79t ZWU ut | 9tJ) (6)
j€l
with 2-dimensional parameters 7; = (7¢,00...0, 7,100 - - - » T£11.1),

0; = (0100.-0, 0100 - - -, 0211..1), and Cj is a rotated copula as defined in Section {4] Parame-

ters m; > 0 are mixture weights such that > ., m; = 1, whereas 6, ; are copula parameters

jeT
whose parameter space depends on the specific copula chosen, for t =1,...,T.

It is not difficult to derive association coefficients, like Kendall’s tau, and tail dependence
coefficients for a mixture copula in terms of the corresponding coefficients for the individual
copulas. In particular, the Kendall’s tau between any par of variables, say (Ui, Uix), @ #
k=1,...,m, for the mixture copula @ is

7 = AB{CP Uy, U | 7,000} — 1= 4> mjB{CY (Usi, Unre | 0,)} —

jel

= Zﬂm [4E{C(2 (Ui, Upie | 01)} — 1} Zﬂ-t,.] Tt.js

jeJ jel

where 7, ; is the individual Kendall’s tau, between (U ;, Uy ), for each of the mixture copula
components Cj. In particular, for the Clayton family , all rotated mixture components
Cj, as in (i)—(vii), share the same properties of the Clayton family, therefore their Kendall’s
tau coefficients are 7,5 = 0,5/(24 0,5) if >, 7 is an even number, and 7, ;5 = —6;;/(2+ 6, ;)
if ", ji is an odd number. Therefore, the Kendall’s tau coefficient for the mixture copula

@ of Clayton components becomes

_ S O
= S DER (). )
jel ’

Similarly to Kendall’s tau, it is not difficult to prove that multivariate tail dependence

coeflicients for mixture copula @ at time ¢, become the mixture of components-wise tail
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dependence coefficients, that is
Mac(Cr) =) mehex(C)), (8)
jel
for any k € J and with A\, x(Cj) the k-tail dependence coefficient for rotated copula Cj. For
the Clayton family case, A¢x(Cj) > 0 only for k = j. Therefore, when m = 2 and using (),
we obtain that the tail dependence coefficients simplify to A\; ;x(Cy) = 7Tt7j7k(2)_1/0t7j’k. Now,
for m = 3 we use and obtain that the tail dependence coefficients are X, ;, ;,,(Ct) =
Ttgrgargs (3/2) 7/ Oraizds
In summary, our mixture copula proposal @ is flexible enough to capture a larger class
of dependence associations and all 2™ tail dependencies, in terms of the copula parameters

myand Oy forjeJandt=1,... 7.

6 Bayesian analysis

6.1 Prior distributions

To allow for temporal dependence in the parameter estimation, we propose a prior dynamic
process for m = {m }1<4<p, where m; = {m;,j € J}. Since ZJ.EJ m; = 1 for all ¢, the
natural marginal prior for 7; would be a Dirichlet distribution with parameter agp, where
p = {p;,j € J} such that ap > 0, p; > 0 and Zjeﬂpj = 1. To relate a set of Dirichlet
random variables, we use ideas from [25], who defined dependence in univariate random
variables whose distributions belong to the exponential family, and define a dynamic prior
with temporal dependence as follows.

Let n, = {m;,j € J} € R?" be a latent vector corresponding to each 7, and let w =

{wj,j € J} be a unique latent vector such that
w ~ Dir(agp) and n,|w = Mult(a;, w), (9)

with a; € N, ny € N and Zje]] ntj = a;. Then, the prior dependence in m, is modeled
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through a subset 0; of previous latent variables {n,,ny,..., 1,1}

™ n % Dir (aop + Z 77k> . (10)

keo:

We denote this construction as DDir(ag,a, @) with ay > 0, a = (ai,...,ar) and subsets
9 = {0,} of lags. Different temporal dependencies can be induced by an appropriate selection

of subsets of lags. For instance: mowving average type of order ¢ can be induced by defining
O ={t,t—1,...,t—q}; (11)

seasonal dependence of order p can be induced by defining, for seasonality s,
Oy = {t,t —s,t—2s,...,t —ps}; (12)

or a combination of moving average of order ¢ and seasonal dependence of order p. In general,
the only requirement is that ¢ € 0,.

Properties of this prior are given in the following proposition.

Proposition 1 Let w = {m;} ~ DDir(ag,a, d) a sequence of vectors whose probability law

15 defined by @ and forag >0, a; € N and subsets d. Then,
(i) The marginal distribution for each m; is Dir(aop),

(i) The correlation between m ; and w5, for t # r and j € J, does not depend on the

specific j and is given by

o (Zkeamar ar,) + (Zkeat ar,) (Zke&- ar,)
(a0 + Xpeq, ar) (a0 + Xpcp, ar)

Corr(m, mp5) =

(i5i) If a; =0 for allt =1,2... then the m;’s become independent.

Proof
For (i) we rely on conjugacy properties of the Dirichlet multinomial Bayesian updating [3].

This states that if ,, ¢ = 1,2,... are conditionally independent given w in @D, whose prior
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is w ~ Dir(aop), then the posterior distribution for w given the n,’s is Dir (agp + >, m;)-
Replacing w in the posterior by 7; we obtain that the marginal distribution for 7; is the
same as the prior for w.

For (ii) we first note that for a specific j, the distributions for wj, n;j and 7 ; reduce to beta,
binomial and beta, respectively. To obtain the correlation we rely on iterative formulae. The
covariance is Cov(m 3, m,5) = E{Cov(mj, 75 | )} + Cov{E(m; | ), E(m,; | n)}, where the

first term is zero due to conditional independence. Then

aoPs + D pea, My AoD; + D pea, Mhi }

(Tegs 7r5) a0+ D peo, Wk G0+ D pe Ok

which, after canceling the additive constants and using the linearity of the covariance, be-

comes

1
COV(ﬂ't,j, 7T7*,j) = ) Cov {Z Nk.js Z nk,j} .

(a0 + 2 keo, ax) (a0 + 2 kea, W ke, k€D,
After using the iterative formula for a second time, we get

E [cov{znk,j,znk,j w} +COV{E (an w) E (Zq:% w)} (13)

kGat k;e@r keBt k;e&r
Within each sum we can isolate the common part as Zkeat Mkj = Zkeam& Mk j +Zk€3t_ar Mkj

and Y 1o Mk = D peo,no, ThiT Dores,—s, ki, and using covariance properties and conditional

independence, becomes

E{Var( > Mg

kedyNoy

wj> } + Cov {Z arwy, Y akwj} .

keo, ke

The first expected value, after obtaining the conditional variance is E{}, 5~ arwj(1 —
W)} = (Creoina, @) E(ws — wi) with E(wy — wf) = BE(wy) — E*(wj) — Var(wj) = agVar(w).
The second term is (Y5, @k)(D_kes, ar)Var(wj). In conclusion, we obtain

a0 (Y reo,no, @) + (Dres, ) (Zireos, @)

(ao + Zkeat &k) (ao + Zkear &k)

Cov(wyj,wrj) = Var(wj).
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Since wj, m;j and m,; all have the same beta marginal distribution, (ii) is demonstrated.
For (iii) we note that a; = 0 for all ¢ implies that n, = 0 with probability one so the
dependence disappears and 7; become independent with marginal distribution Dir(agp). ©

The strength of dependence in the prior for 7 depends on the model parameters ag, a
and subsets 0. Larger values of any of the first two induce stronger dependence. More
shared elements in 0, and 0, also indicate stronger dependence. However, if the intersection
between sets 0, and J, is empty, the correlation is still positive.

Prior distributions are completed by assigning hierarchical gamma distributions for each

0; 5, so that information is shared across times ¢ for each j. That is,

ind

01 | B5 ~ Ga(d;, 55), and (5 ~ Ga(e;, g;) (14)
fort>1and jel.

6.2 Posterior distributions

Let Uy; = (Uigs---,Unys) for i = 1,...,n; a sample of size n; from model @ for each
t=1,...,T. Let Z;; be a latent vector that identifies the mixture component from where
observation ¢ is coming from, that is, Z;; = {Zj;,j € J} ~ Mult(1, 7). Assuming for the
moment that together with U,; we observe Z,;, then the extended likelihood has the form

T nyg

f,z | m,0) = [T T T {meifiCasss - timei | 605)} 5

t=1 i=1 jeJ
where fj(u; | 0;;) are the density functions associated to each of the copula rotations Cj for
jel.

In particular, for the Clayton family , the corresponding density becomes

m -1/0-m .,
fo(u) = {Zu;g —m— 1} [T+ G = Doyu
i=1 i=1
For any rotated version we just evaluate at u = (@, g, . . . , U,,) Where 4; can be u; or 1 —u;.
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The prior distribution for (7r,0) is defined by equations @D, and . Again,

extending the prior to include the latent variables 7 and w we get

f(m,m,w) = Dir(w | agp HDH" (ﬂ't

aopp + ZTI]) Mult(n, | a;, w)

JEO:

and

N

= HGa(ﬁj | €5, 95 H a(bs | ds, Bj),

jel t=1

independent of each other.
Posterior distributions are characterized through their full conditional distributions. These

include actual parameters as well as latent variables and are given as follows.

(a) The posterior conditional for Z;; is
Zy; | rest ~ Mult(1, 7)),

where * = {7};} and
o mfi(u | 0n5)
o

4 ZkeJ 7Tt,kfk(uzt,i ’ et,k).

(b) The posterior conditional for 7r; is

nt
7, | rest ~ Dir <aop + Z Ny, + Z Zt,z‘) )

keo, =1

(¢) The posterior conditional for n, is

f(my | rest) o H I( (WJ' L m’j> I (Z My = at) ;

ntj ) Hlegt (a/()pj + zkeal nk?J) jel

where o, = {l : t € 0} is the set of inverse subsets.

(d) The posterior conditional for w is

f(w | rest) = Dir (w

T
60p+2m> .

t=1
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(e) The posterior conditional for 6, ; is
dj—1 -
J(Oug [ rest) o< 65 e A0 | (s | Brg)}
i=1

(f) The posterior conditional for f; is
T
By | rest ~ Ga (ej~|—de, Jj +Zet7j) :
t=1

Posterior inference will rely on the implementation of a Gibbs sampler [30] based on
the previous posterior conditional distributions. Sampling from (a), (b), (d) and (f) is
straightforward since they are of standard form. To sample from (c), since n, is a vector of
dimension 2™ with a sum restriction, it is easier if we sample from each of the components
mj for j € J_qy =J — 1, with 1 = 11---1 the vector of all 1’s, using f(n; | rest) o

{wj [Tic, 3/ (wl [T, 7Tl,1> }"td I (Ut,j €{0,1,...,a; — Zkej(,l) nt7k}>
C(nes+ 1) Tle, T (aops + Xpes, M) TOea + 1) Tlie,, T (a0p1 + X pes, Mh1)

with m:1 = a; — Zjej(,l) nej- Sampling from (e) will require a Metropolis-Hastings step [32].

We suggest to use an adaptive random walk proposal defined as follows. At iteration (r+ 1)
sample 0;; ~ Ga(k, K/ Ot(g)) and accept it with probability

f(6;; | rest)Ga(6ys | . 5/6;;)

F(0F) | rest)Ga(0;; | i, 1/00)

o(075.0,7) =
where « is truncated to the interval [0,1] and s is a tuning parameter that controls the
acceptance rate. We adapt  following the method of [23]. The adaptation method uses
batches of 50 iterations and for every batch h we compute the acceptance rate AR™ and
increase k(M) = kM1.01V7 if AR® < 0.3 and decrease k1) = xM1.01-VP if AR®™ > 0.4,
with k(1) = 1 as starting value. This adaptation scheme satisfies diminishing adaptation as
h — oo and in the applications we restrict the parameters to a compact thus ensuring that
the sampler is valid [27].
Implementation code for our dynamic Clayton mixture model, for dimensions m = 2 and

m = 3, can be found at the GitHub repository https://github.com/RuyiPan/TD-MRC.
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7 Numerical analyses

7.1 Simulation study

We conduct a comprehensive simulation study with m = 2 to evaluate the performance of
the proposed model. The true generative model is set using 6; = (6100, 010, 0101, 0c11) =
(5,3,4,3) for t =1,...,T, with T"= 20. The weights of rotated Clayton copulas are chosen
to be linearly dependent in time. More specifically, we first set 71 = (71,00, 71,10, 71,01, T1.11) =
(0.4,0.25,0.25,0.1) as the initial values at ¢ = 1 and subsequently the weights are constructed
using 00 = 0.95m_1,00, Te,00 = 1.057—1,10, T = 0.1, m 01 = 1 — Moo — M0 — T for
t=2,...,20. We sampled n;, = 300 realizations from this model for each time ¢t = 1,...,T
as the simulated data.

For the prior distributions, we set hyper-parameters ag = 1, and e, = g = 1. To
evaluate the performance of the model in capturing the temporal dependence, we considered
a moving average type of order ¢, that is, the subsets of lags are defined by . We
considered different hyper-parameters for the dynamic process: a; = 0,1, 10, 20, 30,40 and
g =0,1,...,7. The model with a; and ¢ is denoted as M,, ,. We ran the MCMC for
7,000 iterations. To determine the burn-in, we monitor the adaptive x parameter and the
acceptance rate for each batch. These are included in Figure [2| where we observe that the
k becomes stable and the acceptance rate stabilizes between 0.3 and 0.4 after 60 batches.
Therefore we set the burn-in to be equal to 3,000 = 60 x 50 iterations. This also confirms
that the adaptation method proposed at the end of Section [6] performs well. Computing
time is around 50 minutes for each run on an Intel Core 19 processor at 2.3 GHz with 32 GB
of RAM.

To assess model performance, we computed two goodness of fit (gof) measures, the log-
arithm of the pseudo marginal likelihood (LPML) [8] and Watanabe-Akaike Information

Criterion (WAIC) [34]. Table [If shows these values. In general, the two gof measures concur
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in determining the best model for each value of ¢. Briefly put, for smaller values of a;, better
fitting is achieved for larger orders of dependence ¢ in the 7, whereas for larger values of
a;, smaller orders of dependence ¢ produce better fit. Overall, the best model is, M3 7,
obtained with a; = 30 and ¢ = 7.

Two more comparisons are also included in Table [[l The case of independence across
times for m ; is obtained when a, = 0, regardless of the value of ¢q. Goodness of fit statistics
show that the independence fitting is not the worst, but is definitely underperforming in
comparison to the other dependence models. Additionally, we also consider the model that
assumes independence in the 6, ;. This is achieved by considering a very low variance in f;,
as obtained by setting e; = g; = 1000. This latter model produces inferior gof measures as
compared to the hierarchical priors.

To assess in more detail our model’s performance, we compare posterior estimates of 7
and @ with the true values. We use the best fitting model and use posterior means as point
estimates, together with quantiles 2.5% and 97.5% to produce 95% credible intervals. Figure
(left panel) shows posterior estimates of 7 as time series for t = 1,...,20 in four panels
for j € {00,10,01,11}. Posterior estimates follow very closely the path of the true values.
Similarly, Figure |3| (right panel) shows posterior estimates of 6, ; as time series in four panels.
All the true values lie within the 95% credible intervals. We note that credible intervals for
6:00 are narrower at the beginning and become wider toward the end (bottom-left panel)
whereas the credible intervals for 6; ;¢ are wider at the beginning and narrow toward the end
(bottom-right panel). The credible intervals for 6,1, remain wide overall (top-right panel),
while those for ;¢ are narrow (top-left panel) in general. Wider credible intervals are due
to smaller weights (less data points) associated to the corresponding mixture components.
Specifically, the higher variability for 6, for larger ¢ is a consequence of the smaller weights
for the third component 7 ;.

We compare the best fit produced by M,, , with the dynamic copula model of Hafner
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& Manner [I1]. This latter model assumes a Gaussian copula with time-varying associa-
tion parameter p;. It relies on a Fisher transformation (inverse hyperbolic tangent) of the
association parameter as A\ = (1/2)log ((1+ p:)/(1 — p;)) and models the dynamics via
an autoregressive process of the form A\, = a + A1 + ¢ with ¢, ~ N(0,7). We perform a
Bayesian analysis for this model with vague prior distributions a ~ N(0,0.01), 5 ~ N(0,0.01)
and 7 ~ Ga(0.01,0.01). We will refer to this model as dynamic Gaussian.

As a second competitor, we consider a simple Clayton copula, which is the result of
assigning fixed weight one to the mixture model and keeping the exchangeable prior on the
association copula time varying parameters.

To compare, we compute the log predictive scores (LPS) defined in [9]. We fit models
with data up to time ¢ —1 and compute the LPS for time ¢, that is, LPS(t) = Y, log f(uy, |

u;_1), where the predictive distribution is approximated via Monte Carlo as

R
Flaes | we) = (1/R) Y flug | wi7,67)
r=1
and (\",0{") are obtained from the posterior distribution f(m, 8, | ui, ..., u,1) for a total

of R iterations.

The LPS measures at ¢t = 20 as well as the LPML and WAIC for the different models are
reported in Table[2] The performance of the simple Clayton copula is the worst, as expected.
The dynamic Gaussian improves a little the goodness of fit measures, but is far behind the
dynamic Clayton mixtures. When removing the nyy data points from the fitting, the best

performance is achieved when taking a;, = 20 and ¢ = 7.

7.2 Bivariate real data analysis

We also assess how well our model can capture the relationship between variables in a real life
application where data is generated from some unknown distribution, rather than directly

from a mixture copula.
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We used the Environment and Climate Change Canada (ECCC) data catalogue from
the government of Canada. The ECCC managed the National Air Pollution Surveillance
Program (NAPS), which began in 1969 and is now comprised of nearly 260 stations in 150
rural and urban communities reporting to the Canada-wide air quality database (for more
details about the dataset, please visit https://data-donnees.az.ec.gc.ca/data/air/monitor).

Specifically, we selected ozone (O3) and particulate matter with diameters 2.5 and smaller
(PM,5) as the bivariate data. We used the hourly data from the years 2017 to 2019. Due to
a large number of missing values, we took averages across hours and across days to produce
monthly data for each station, ¢t = 1,...,T with 7" = 36 for a total time span of three years.
The number of stations varies across months, specifically we have n, = 177 for the months
in 2017, n, = 187 for 2018 and n; = 189 for 2019.

Since our focus is not on the marginal distributions, but on the association between
these two variables, we applied the modified rank transformation [6] to produce data in
the interval [0,1]. Specifically, if observed data is denoted by (X4, Xor), we compute the
empirical cdf’s, independently for each variable, say ﬁxl and F 'y, and apply the inverse
transformation Uy = ]3)}11 (X14) and Uy = ﬁ)}j (Xoi)-

To explore the data, we computed empirical Kendall’s tau and Spearman’s rho association
coefficients per month. These are shown in Figure[2] In both cases the dependence is cyclical
around zero, reaching its maximum in June/July and its minimum in October/November.
This suggests that a seasonal specification of our model seems to be a good candidate to
capture these cycles. For completeness we considered three types of models: moving average
type of order ¢ as in ; seasonal model of order p with annual seasonality s = 12 as in
(12); and a combination of moving average and seasonal. We denote the model M,, ,, where
the indexes describe chosen values for a;, ¢ and p.

Similar to the simulation study, we set the parameters ay = 1 and e; = g = 1 to define

the prior distributions. In this real data analysis, we also varied the dependence parameters

21


https://data-donnees.az.ec.gc.ca/data/air/monitor/national-air-pollution-surveillance-naps-program/?lang=en

a=0,1,....5, ¢g=0,1,...,4 and p =0, 1,2 to assess the performance of the model under
different strengths of temporal dependence. We ran the MCMC for 10,000 iterations and
set the burn-in equal to 5,000. Computing time is around 60 minutes for each run in an
Intel Core i9 processor at 2.3 GHz with 32 GB of RAM.

Table |3| shows the LPML and WAIC values for the different prior specifications. The two
gof measures agree that the preferred model is M, ; 9, i.e. when a; =1, ¢ =1 and p = 2.
In summary, a combination of moving average and seasonality are required to model this
particular dataset.

In Figure [5| we show posterior estimates of the weights 7 (left panel) and copula coef-
ficients @ (right panel), respectively. The cyclical monthly dependence is captured by the
weights. Since the first and third components of the mixture induce positive dependence,
and second and fourth induce negative dependence, there is an opposite behaviour between
the pairs (m 00, m211) and (710, 7e01). The former reaches its peak in the summer and the
latter in the autumn-winter, however the peaks within the second pairs do not occur exactly
at the same months, 710 has its peak around September-October (autumn), whereas 7 o
has its peak around December-January (winter). Among the four components, component 3
is the one with slightly smaller weights, apart from the summer of the year 2019 where m; 11
has two peaks in May and September of around 0.75 and 0.5, respectively. Therefore, our
mixture model is able to capture the seasonal dynamics in the data.

The strength of the association between the pair (O3, PMy5) is determined by parameters
0¢;. Their posterior estimates are all around slightly below the value of one, with 6,9 and
001 showing more variability along time. Uncertainty in the estimation of 6,1, is somehow
higher, due to the slightly smaller weights m;1; and thus smaller sample size for estimating
0i11. According to 0,9, positive dependence is particularly higher in the summer of the
years 2017 and 2019 with a lower-lower tail dependence. On the other hand, looking at 0 ;¢

and 6,01, negative dependence is high in the winter of the three years.
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We can further assess the tail dependence in the four corners of the unit square by
computing the tail dependence coefficients A;, given in . These are reported in Figure |§|
We first note that none of them is larger than 1/2; the only exception being the upper-lower
At,10 in October of 2018, where perhaps Oz was extremely high and PM; 5 was extremely low
in that month. The lower-lower and upper-upper tail parameters A, oo and A;;; show very
similar behaviour, they are most of the time close to zero, both with moderate peaks in July
of the three years. On the other hand, the upper-lower and lower-upper tail parameters \; 19
and \;o; do not behave exactly in the same way. These have wider peaks than the previous
tail coeflicients with moderate tail dependencies in the autumn for \; ;o and in the winter
for A 1.

Finally, we show joint density estimates in Figure [7| as heat plots, together with scat-
ter plots of the data for each month t. We particularly concentrate on the months where
the dependence changes from negative to positive. This transition is consistent along the
three years of study for the months of June and July. It is interesting to see that Au-
gust is a transition month, where in 2017 and 2019 the dependence is 4-way, i.e., the four
mixture components of our model are present, in fact the estimated weights and coeffi-
cients are: mog7-s = (0.41,0.52,0.02,0.05), O2017-s = (0.69,0.69,0.81,0.59); mop15-8 =
(0.07,0.86,0.04,0.03), O2015-s = (0.48,0.31,0.84,0.50); m2019-s = (0.11,0.59,0.09,0.21),
020195 = (0.57,0.31,0.59,0.58). What makes the heat plots to show the 4-way dependence
is a combination of the weight m;; and the intensity 0, ;.

We compare the fit of M ;o with the dynamic Gaussian and simple Clayton copula
and carry out two validation studies. In the first validation study we partition the dataset
into two sets, fitting and testing. For each month ¢t = 1,...,T we took ny; = 140 obser-
vations for fitting and ng; = ny; — 140 for testing. We estimate the model parameters with
the fitting set and use the testing set to predict Oz conditional on the observed value of

PM, 5. For this we use the conditional copula Cy(uy ¢ | uay, 7, 0¢) = ZJ. T jCr(ugy | ury, O3)
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with Cj(ugy | 1, 0r5) = (0/0u14)Ci(urs, uge | 0:5) for j € {00,10,01,11}, and obtain the
posterior predictive mean Uy = E(Usy | w14, 7, 0;) as point prediction.

We assess model performance by computing the mean square error between the observed
ug,; and predicted uy; for Os in the test set, i.e. MSE = (Zle ngtMSEt> / (Zle n2t>,
where MSE, = (1/ng) > 0% (ugy — Usy)?, as well as the LPML and WAIC goodness of fit
measures for the fitting sets. Results from the first validation study are included in Table [4]
All four gof statistics for the dynamic Clayton mixture model are better than those obtained
with the dynamic Gaussian and simple Clayton copula models, confirming that our model
is preferred for the analysis.

The second validation study consists in comparing the log predictive scores (LPS) defined
in [9]. We fit models with data up to time ¢ — 1 and compute the LPS for time t. We repeat

this for times t = s+ 1,...,T and aggregate the scores as
T

LPS = Z Zlog flug, | wq).

t=s+1 i=1

In particular we took s = 30. The values of LPS are reported in Table[5] Here we observe that
the simple Clayton has the worst predictive scores. For times ¢t = 31, 32, 33, 35 the dynamic
Gaussian copula obtains a better predictive score, and for times ¢t = 34,36 the dynamic
Clayton mixtures has better performance. However, when aggregating the predictive scores

for the six predicted times, our proposed model achieves the best performance.

7.3 Multivariate real data analysis

Using the same Canadian pollution repository ECCC, we selected PM, 5, nitrogen dioxide
(NO7) and sulfur dioxide (SO3) to perform a multivariate analysis with m = 3 variables.
Again, hourly data were averaged to produce monthly data for years 2017 to 2019. In total
we have T' = 36 months and n; = 91 stations for each month in 2017, n, = 104 for 2018,
and n; = 100 for 2019. We applied the modified rank transformation to produce data in the

interval [0, 1].
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We first performed an exploratory analysis and computed pairwise empirical Kendall’s
tau coefficients for the three variables. These are reported in Figure[§] Dependencies are not
seasonal as in the bivariate case and the three coefficients fluctuate between negative and
positive values. Largest positive dependence occurs between PM, 5 and NO,, and lowest
negative dependence between NO, and COs.

Prior specifications, dependence search and MCMC settings were the same as in the
bivariate real data analysis. Table [6] reports the LPML and WAIC gof statistics. Both
measures agree on the best model which is My 49, that is, a dynamic total mass a; = 4, a
moving average order of ¢ = 4 and a seasonal order of p = 2. Although the seasonality was
not clear in the exploratory analysis, the best model is using information from previous two
years.

Posterior inference for parameters w and 6 are shown in Figure [9] obtained with the
preferred model. We observe that component 000 (no rotation) dominates the mixture with
the highest weight 7o of around 75%, followed by component 001 with the remaining 25%.
The rest of the components have estimated weights close to zero, with component 111 having
sometimes a small positive weight in the winter 2017-2018 and in spring of 2019. Copula
coefficients were also estimated. Point estimates are all different than zero for all mixture
components, however credible intervals are a lot narrower for those components with high
weight. Largest @ values correspond to mixture 110, but the uncertainty is too high (wide
credible intervals) to be trusted.

Joint density estimates are presented as pairwise heat maps in Figure [I0] We only
show the last trimester of 2017 and each row corresponds to a different pair, as follows:
(PMs5, NOs) in the top row, (PMs 5, SOs) in the middle row, and (NO,, SO,) in the bottom.
In all bivariate density estimates we see the presence of tail dependence in the 00 (lower-
lower) corner, whereas in the second and third row we see a 01 (lower-upper) tail dependence.

This corresponds to SO which is plotted in the y-axis and has a negative dependence with
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the other two variables PM, 5 and C'O,. This combination of tail dependencies makes the
heatmaps show a spider effect towards the bottom-left and upper-left corners in September
and November of 2017. Moreover, in October of 2017, for the pairs (PMsj5, S0O2) and
(NOz, SO3), a combination of three trends can be identified with three tail dependencies in
the 00, 01 and 11 corners.

Certainly, this non standard dependence among these three pollution variables could not

be captured by a single copula model.

8 Concluding remarks and future work

We extend a copula’s versatility in capturing dependence patterns using mixtures of copulas
with a dynamic component in the weights. The idea is illustrated using Clayton copulas,
but it can be applied to any other families. The motivation is given by problems where
different extreme regions of the paiwise bivariate distributions exhibit patterns that cannot
be captured by a single copula.

In situations in which the dependence varies in time, we propose a dynamic mixture
of copulas model in which the mixture weights and the parameters of the copulas involved
in the mixture are modelled either through a moving average or a seasonal dynamic. The
resulting increase in modelling flexibility is illustrated by all our numerical experiments, be
they synthetic or real.

Dependence in our dynamic Dirichlet prior on the weights is controlled by the triplet
(at,q,p). For the analyses considered here we have kept a; to be constant across time, to
make our prior easy to define. However, this parameter can certainly be chosen to be different
across time, providing additional flexibility in the model. We have left this substantial
generalization for future work.

Additionally, special care has to be put for the analysis of multivariate data for large

dimension m, since the number of components in the mixture increases exponentially at a
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rate 2. In practice, not all extremes are likely to be significant. In order to impose sparsity,
we plan to exploit a sparse prior designed to reduce the number of components needed to
model the data and still maintain the added flexibility demonstrated in this work. An added
question of interest is the identification of lower dimensional manifolds where a mixture of

lower-dimensional copulas can be used to capture the dependence in the data.
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ewgr @ q=0 g=1 q=2 q=3 q=4 q=5 q=6 q=7
LPML

1 0 1685

1 1 1686 1683 1684 1688 1687 1692 1691 1696

1 10 1693 1698 1702 1702 1706 1705 1707 1706

1 20 1696 1702 1705 1705 1707 1706 1707 1706

1 30 1699 1704 1706 1708 1705 1708 1706 1708

1 40 1702 1705 1704 1708 1706 1705 1705 1705
1000 30 1682 1688 1691 1693 1693 1691 1693 1692

WAIC

1 0 -3372

1 1 -3374 -3368 -3370 -3378 -3375 -3384 -3384 -3393

1 10 -3388 -3397 -3403 -3405 -3413 -3410 -3413 -3411

1 20 -3393 -3405 -3409 -3411 -3415 -3413 -3414 -3412

1 30 -3398 -3409 -3411 -3416 -3410 -3415 -3413 -3416

1 40 -3403 -3410 -3409 -3416 -3412 -3410 -3409 -3411

1000 30 -3364 -3376 -3382 -3386 -3386 -3382 -3385 -3385

Table 1: Simulated data. LPML and WAIC gof values of different M,, , models. Best values
are bolded.

Model / Measure LPS LPML WAIC

My, 73.2 1603  -3209
Mooz 74.9 1625 -3250
Mso 7 73.1 1624  -3247
D.Gaussian 25.4 146 -292
S.Clayton -12.3 9 -18

Table 2: Simulated data.

data.

LPS statistic using times 1,...,19 for fitting and ¢t = 20 for
prediction. The other gof measures, LPML and WAIC, were calculated with the fitting
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LPML WAIC

ar | MAGO) MAQ) MA@2) MA(@3) MA@4) | MAO) MA(1) MA2) MA@3) MA®A)
S(0)

0| 435 -871

1| 433 438 436 434 434 | -867 -875 -873 -868 -867

2 | 433 433 433 426 422 | -866 -867 -866 -852  -843

3| 432 432 428 421 416 | -864 -863 -857 -843 -832

4 | 432 427 421 417 410 | -863 -855 -841 -834 -820

5 | 429 424 417 409 403 | -858 -849 -834 -817 -805
S(1)

0| 435 -871

1| 440 441 439 435 433 | -880 -881 -878 -869 -866

2 | 439 435 433 427 422 | -877 -871 -865 -854 -843

3| 434 432 427 420 414 | -868 -865 -854 -839 -829

4 | 432 428 422 414 408 | -863 -857 -844 -829 -815

5 | 427 424 416 408 401 | -854 -848 -832 -815 -802
S(2)

0| 435 -871

1 | 440 442 438 433 430 | -879 -883 -876 -867 -859

2 | 437 433 433 427 420 | -874 -865 -865 -854 -840

3 | 434 432 427 419 413 | -867 -864 -853 -838 -826

4 | 430 425 424 412 407 | -861 -850 -847 -824 -813

5 | 426 422 418 408 397 | -852 -844 -836 -817 -794

Table 3: Bivariate real data. LPML and WAIC statistics for different prior choices for
Mat,qm'

Model / Measure MSE LPML WAIC

Mi1s 0.0751 397 -794
D.Gaussian 0.0763 383 =767
S.Clayton 0.0826 39 -78

Table 4: Bivariate real data. Goodness of fit measures in first validation study.
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Model t=31 t=32 t=33 t=34 t=35 t=236 Total

Mi 10 105 31 91 178 21.6 114 282
Mg 3.2 47 -121 21.8 253 122  39.3
Mig 124 -38 -109 161 240 11.9 249
Mias 59 27 -116 185 268 11.6  36.7
Mo 82 31 -100 154 268 12.3  33.2

D.Gaussian 5.2 -1.8 -1.3 =71 37.5 6.1 38.8
S.Clayton -79.5 -170.5 -153.6 -258.2 -246.1 -199.8 -1107.6

Table 5: Bivariate real data. LPS statistic computed by fitting models from time 1 to ¢t — 1
and predicting time t.

LPML WAIC

ar | MAGO) MAQ) MA@2) MA(@3) MA@4) | MA®O) MA(1) MA2) MA@3) MA(A4)
S(0)

0| 271 -542

1| 286 289 293 294 294 | -573 -579 -589 -588  -589

2 | 281 278 278 278 276 | -562  -5H7  -BHT  -BH6  -HH3

3| 287 291 289 292 291 | -574 -582 -579 -HB86G  -H83

4 | 290 299 293 297 297 | -B81 -601 -B87 -H94  -H95

5 | 282 282 281 282 282 | -665 -565 -563 -H65  -H65
S(1)

0| 271 -542

1| 288 288 291 295 287 | =576  -577 -583 -590 -575

21 279 279 278 278 276 | -559 -558  -557  -HB5HT  -H5H3

31 2890 2890 292 292 294 | -579 -579 -584 -586 -589

4 | 292 294 298 297 293 | -586 -H91 -B97 -594  -H8Y

5 | 283 282 283 283 283 | -B68  -565  -B6T  -HB66  -H6T
S(2)

0| 271 -542

1| 287 286 289 295 279 | -575 =572 -578  -H90  -562

2 | 280 279 281 277 277 | -b61  -5H8  -b62  -BH5  -HH6

3| 290 291 291 292 292 | -579 -582 -582 -H86  -H8H

41 296 296 295 295 301 | -594 -593 -591 -590 -603

5 | 285 285 286 282 283 | -571 -B71  -B72 -B65  -566

Table 6: Multivariate real data. LPML and WAIC statistics for different prior choices for
Mat,%p‘
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Figure 1: Unit square divided in four quadrants.
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Figure 2: The recorded £™ and acceptance rate for each batch h. The batch size is 50.
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Figure 3: Simulated data. Posterior estimates of 7 (left) and @ (right): posterior mean (solid
line) with 95% credible intervals (shadows), together with the true value (dotted black line).
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Figure 4: Bivariate real dataset. Empirical Kendall’s tau (left) and Spearman’s rho (right).
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Figure 5: Bivariate real dataset. Posterior estimates of 7 (left) and @ (right): posterior
mean (solid line) with 95% credible intervals (shadows).
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Figure 6: Bivariate real dataset. Posterior estimates of A: posterior mean (solid line) with
95% credible intervals (shadows).
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Figure 7: Observed real data and estimated joint density from April to September 2017 (top),
2018 (middle), and 2019 (bottom). Dependence patterns tend to vary between seasons with
some months exhibiting transitional regimes.
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Figure 8: Multivariate real dataset. Pairwise empirical Kendall’s tau.
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Figure 9: Multivariate real dataset. Posterior estimates of 7w (top) and 6 (down): posterior
mean (solid line) with 95% credible intervals (shadows).
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Figure 10: Multivariate real data. Estimated joint density for months September to Decem-
ber of 2017. (PMsy5, NO3) (top row), (PMss, SOs) (middle row) and (NO,, SO3) (bottom
row).
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